Search results

  • Second Proof (using inversion): Let the inversion <math>\psi(A,1)</math> map B,C and D to B',C' and D' respectively. We then have <cmath
    7 KB (1,300 words) - 00:11, 28 October 2024
  • == <math>\varphi</math>, <math>\psi</math>, and Binet's Formula== .... The ratios between successive terms has you continue backwards is <math>\psi</math>.
    7 KB (1,111 words) - 13:57, 24 June 2024
  • ...math>\varphi</math>||\varphi||<math>\chi</math>||\chi||<math>\psi</math>||\psi | <math>\Phi</math>||\Phi||<math>\Psi</math>||\Psi||<math>\Omega</math>||\Omega
    16 KB (2,315 words) - 19:35, 4 November 2024
  • .../math> so that <math>\theta=\psi\phi</math>, i.e. so that <math>\theta(i)=\psi\circ\phi(i)</math> for all <math>i\in I</math>. We often like to draw a dia
    2 KB (454 words) - 16:54, 16 March 2012
  • The function <math> \displaystyle \psi </math> from the set <math> \mathbf{N} </math> of positive integers to itse <math> \psi(n) = \sum_{k=1}^{n}(k,n), \qquad n \in \mathbf{N} </math>,
    6 KB (1,007 words) - 08:10, 29 August 2011
  • ...lacing their reciprocals it with the familiar <math>\phi</math> and <math>\psi</math>. <cmath>\text{Note: }\phi=\frac{1+\sqrt{5}}{2},~\psi=\frac{1-\sqrt{5}}{2}</cmath>
    6 KB (953 words) - 20:37, 30 May 2024
  • ...\beta + \varphi, \angle AED = \gamma + \varphi, \angle BAE = \angle CAD = \psi+\varphi.</math> ...i)}{\sin \varphi}, \frac {AB}{BE} = \frac {\sin (\gamma + \varphi)}{\sin (\psi +\varphi)},</cmath>
    54 KB (9,416 words) - 07:40, 18 April 2024
  • ...(-1)^n \frac{\Phi(\theta_n)}{\Psi(\theta_n)}</math>, where <math>\Phi,\, \Psi</math> are trigonometric functions and <math>\theta_1,\, \theta_2, \, \thet ...th> to the denominator, we could express it as <math>\Phi(x) = \sin(x),\, \Psi(x) = \cot(x)</math>. Either way, we have <math>\{\theta_1,\theta_2,\theta_3
    2 KB (276 words) - 15:27, 26 December 2015
  • ...(-1)^n \frac{\Phi(\theta_n)}{\Psi(\theta_n)}</math>, where <math>\Phi,\, \Psi</math> are trigonometric functions and <math>\theta_1,\, \theta_2, \, \thet
    6 KB (992 words) - 13:15, 13 February 2018
  • ...he relevant Hilbert space is given by <math>i\hbar\partial_t\Psi = \hat{H}\Psi</math>, where <math>\hat{H}</math> is the linear operator representing the
    417 bytes (69 words) - 13:32, 21 April 2018
  • ...ADC = \gamma = \angle ACD + \angle BCD \implies \angle CAD = \angle BCD = \psi.</math> Similarly, <math>\angle CAD = \angle ABD = \angle BCD = \psi.</math>
    28 KB (4,853 words) - 22:23, 19 November 2024
  • <math>\phi(a) = \phi(b)</math>. Let <math>\psi</math> be the permutation on <math>[n]</math> = \prod_{i=1}^n a_{i\phi(i)} b_{\phi(i) \upsilon(\psi(i))} , </cmath>
    8 KB (1,345 words) - 23:31, 8 May 2020
  • ...<cmath> FG = \frac {a|b^2 z_P^2 - c^2 y_P^2|}{\psi},</cmath> where <math>\psi</math> has sufficiently big formula.
    32 KB (6,426 words) - 16:26, 21 November 2024
  • Let arc <math> \overset{\Large\frown} {AB} = 2\psi \implies</math> ...i, \angle ABD = \gamma =\frac {360^\circ – 6 \psi}{2} =180^\circ – 3 \psi.</math>
    5 KB (782 words) - 15:04, 21 July 2023
  • 243. A Gmaas bite is 314159265358979323846264 psi.
    69 KB (11,805 words) - 19:49, 18 December 2019
  • ...^2}=\frac{AO\cdot AH\cdot 2AO}{AH^2}=\frac{2AO^2}{AH}=AH</cmath> so <math>\Psi(O)=H</math>, hence we conclude that <math>O,P,Q</math> are collinear, as de
    10 KB (1,733 words) - 18:15, 14 June 2020
  • <cmath>\psi = 90^\circ – \gamma + \beta, X = AI_A \cap \omega, X_1 = BC \cap AI_A,</c ...AXC = 180 ^\circ – 2\gamma – \alpha = 90 ^\circ – \gamma + \beta = \psi.</cmath>
    6 KB (998 words) - 20:36, 17 October 2022
  • ...>\angle XAB = \angle XCD = \alpha, \angle BXA = \varphi, \angle DXC = \psi.</math> ...of sines for <math>\triangle CDX,</math> we obtain <math>\frac {CD}{\sin \psi} = \frac {DX}{\sin \alpha}.</math>
    8 KB (1,407 words) - 00:47, 19 November 2023
  • 243. A Almighty Gmaas bite is 314159265358979323846264 psi.
    99 KB (14,063 words) - 20:43, 13 November 2024
  • ...nd using addition, multiplication, exponentiation, and applying the <math>\psi</math> function to ordinals less than <math>\alpha</math>. ...\varepsilon_0</math>. Therefore <math>\psi(0)=\varepsilon_0</math>. <math>\psi(\alpha)=\varepsilon_\alpha</math> holds until the first fixed point of <mat
    5 KB (811 words) - 13:16, 7 June 2020

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)