Difference between revisions of "2017 AMC 12B Problems/Problem 19"

m (Solution 2)
m (Solution 3 (Beginner's Method))
Line 32: Line 32:
 
Thus the sum of the digits is <math>45+55+65+75+30 = 270</math>, so the number is divisible by <math>9</math>. We notice that the number ends in "<math>4</math>", which is <math>9</math> more than a multiple of <math>5</math>. Thus if we subtracted <math>9</math> from our number it would be divisible by <math>5</math>, and <math>5\cdot 9 = 45</math>. (Multiple of n - n = Multiple of n)
 
Thus the sum of the digits is <math>45+55+65+75+30 = 270</math>, so the number is divisible by <math>9</math>. We notice that the number ends in "<math>4</math>", which is <math>9</math> more than a multiple of <math>5</math>. Thus if we subtracted <math>9</math> from our number it would be divisible by <math>5</math>, and <math>5\cdot 9 = 45</math>. (Multiple of n - n = Multiple of n)
  
So our remainder is <math>\boxed{\textbf{(C)} 9}</math>, the value we need to add to the multiple of <math>45</math> to get to our number.
+
So our remainder is <math>\boxed{\textbf{(C)}\,9}</math>, the value we need to add to the multiple of <math>45</math> to get to our number.
  
 
==See Also==
 
==See Also==

Revision as of 15:16, 11 February 2019

Problem

Let $N=123456789101112\dots4344$ be the $79$-digit number that is formed by writing the integers from $1$ to $44$ in order, one after the other. What is the remainder when $N$ is divided by $45$?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 4\qquad\textbf{(C)}\ 9\qquad\textbf{(D)}\ 18\qquad\textbf{(E)}\ 44$

Solution

We will consider this number $\bmod\ 5$ and $\bmod\ 9$. By looking at the last digit, it is obvious that the number is $\equiv 4\bmod\ 5$. To calculate the number $\bmod\ 9$, note that

\[123456\cdots 4344 \equiv 1+2+3+4+5+6+7+8+9+(1+0)+(1+1)+\cdots+(4+3)+(4+4) \equiv 1+2+\cdots+44 \bmod\ 9,\]

so it is equivalent to

\[\frac{44\cdot 45}{2} = 22\cdot 45 \equiv 0\bmod\ 9.\]

Let $x$ be the remainder when this number is divided by $45$. We know that $x\equiv 0 \pmod {9}$ and $x\equiv 4 \pmod {5}$, so by the Chinese remainder theorem, since $9(-1)\equiv 1 \pmod{5}$, $x\equiv 5(0)+9(-1)(4) \pmod {5\cdot 9}$, or $x\equiv -36 \equiv 9 \pmod {45}$. So the answer is $\boxed {\textbf {(C)}}$.

Solution 2

We know that this number is divisible by $9$ because the sum of the digits is $270$, which is divisible by $9$. If we subtracted $9$ from the integer we would get $1234 \cdots 4335$, which is also divisible by $5$ and by $45$. Thus the remainder is $9$, or $\boxed{\textbf{C}}$.

Solution 3 (Beginner's Method)

To find the sum of digits of our number, we break it up into $5$ cases, starting with $0$, $1$, $2$, $3$, or $4$.

Case 1: $1+2+3+\cdots+9 = 45$ Case 2: $1+0+1+1+1+2+\cdots+1+8+1+9 = 55$ (We add 10 to the previous cases, as we are in the next ten's place) Case 3: $2+0+2+1+\cdots+2+9 = 65$ Case 4: $3+0+3+1+\cdots+3+9 = 75$ Case 5: $4+0+4+1+\cdots+4+4 = 30$

Thus the sum of the digits is $45+55+65+75+30 = 270$, so the number is divisible by $9$. We notice that the number ends in "$4$", which is $9$ more than a multiple of $5$. Thus if we subtracted $9$ from our number it would be divisible by $5$, and $5\cdot 9 = 45$. (Multiple of n - n = Multiple of n)

So our remainder is $\boxed{\textbf{(C)}\,9}$, the value we need to add to the multiple of $45$ to get to our number.

See Also

2017 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png