Difference between revisions of "1994 AHSME Problems/Problem 1"
m (→See Also) |
|||
(3 intermediate revisions by 2 users not shown) | |||
Line 6: | Line 6: | ||
==Solution== | ==Solution== | ||
− | Note that <math>a^x\times a^y=a^{x+y}</math>. So <math>4^4\cdot 4^9=4^13</math> and <math>9^4\cdot 9^9=9^13</math>. Therefore, <math>4^13\cdot 9^13=(4\cdot 9)^13=\boxed{\textbf{(C)}\ 36^{13}}</math>. | + | Note that <math>a^x\times a^y=a^{x+y}</math>. So <math>4^4\cdot 4^9=4^{13}</math> and <math>9^4\cdot 9^9=9^{13}</math>. Therefore, <math>4^{13}\cdot 9^{13}=(4\cdot 9)^{13}=\boxed{\textbf{(C)}\ 36^{13}}</math>. |
− | --Solution by [ | + | --Solution by [http://www.artofproblemsolving.com/Forum/memberlist.php?mode=viewprofile&u=200685 TheMaskedMagician] |
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AHSME box|year=1994|before=First Problem|num-a=2}} | ||
+ | {{MAA Notice}} |
Latest revision as of 16:25, 9 January 2021
Problem
Solution
Note that . So and . Therefore, .
--Solution by TheMaskedMagician
See Also
1994 AHSME (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.