Difference between revisions of "2021 AMC 12A Problems/Problem 18"

m (Solution 2)
(Solution 2)
Line 20: Line 20:
 
<cmath>f(3)+f\left(\frac{1}{3}\right)=f(1)=0 \implies 3+f\left(\frac{1}{3}\right)=0 \implies f\left(\frac{1}{3}\right) = -3</cmath>
 
<cmath>f(3)+f\left(\frac{1}{3}\right)=f(1)=0 \implies 3+f\left(\frac{1}{3}\right)=0 \implies f\left(\frac{1}{3}\right) = -3</cmath>
 
<cmath>f(11)+f\left(\frac{1}{11}\right)=f(1)=0 \implies 11+f\left(\frac{1}{11}\right)=0 \implies f\left(\frac{1}{11}\right) = -11</cmath>
 
<cmath>f(11)+f\left(\frac{1}{11}\right)=f(1)=0 \implies 11+f\left(\frac{1}{11}\right)=0 \implies f\left(\frac{1}{11}\right) = -11</cmath>
In <math>A)</math> we have <math>f\left(\frac{17}{32}\right)=17+5f\left(\frac{1}{2}\right)=17-5(2)=7</math>.\
+
In <math>\textbf{(A)}</math> we have <math>f\left(\frac{17}{32}\right)=17+5f\left(\frac{1}{2}\right)=17-5(2)=7</math>.
In <math>B)</math> we have <math>f\left(\frac{11}{16}\right)=11+4f\left(\frac{1}{2}\right)=11-4(2)=3</math>.\
+
In <math>\textbf{(B)}</math> we have <math>f\left(\frac{11}{16}\right)=11+4f\left(\frac{1}{2}\right)=11-4(2)=3</math>.
In <math>C)</math> we have <math>f\left(\frac{7}{9}\right)=7+2f\left(\frac{1}{3}\right)=7-2(3)=1</math>.\
+
In <math>\textbf{(C)}</math> we have <math>f\left(\frac{7}{9}\right)=7+2f\left(\frac{1}{3}\right)=7-2(3)=1</math>.
In <math>D)</math> we have <math>f\left(\frac{7}{6}\right)=7+f\left(\frac{1}{2}\right)+f\left(\frac{1}{3}\right)=7-2-3=2</math>.\
+
In <math>\textbf{(D)}</math> we have <math>f\left(\frac{7}{6}\right)=7+f\left(\frac{1}{2}\right)+f\left(\frac{1}{3}\right)=7-2-3=2</math>.
In <math>E)</math> we have <math>f\left(\frac{25}{11}\right)=10+f\left(\frac{1}{11}\right)=10-11=-1</math>.\
+
In <math>\textbf{(E)}</math> we have <math>f\left(\frac{25}{11}\right)=10+f\left(\frac{1}{11}\right)=10-11=-1</math>.
 
Thus, our answer is <math>\boxed{\textbf{(E)} \frac{25}{11}}</math>
 
Thus, our answer is <math>\boxed{\textbf{(E)} \frac{25}{11}}</math>
 
~JHawk0224
 
~JHawk0224

Revision as of 15:29, 11 February 2021

Problem

Let $f$ be a function defined on the set of positive rational numbers with the property that $f(a\cdot b) = f(a)+f(b)$ for all positive rational numbers $a$ and $b$. Furthermore, suppose that $f$ also has the property that $f(p)=p$ for every prime number $p$. For which of the following numbers $x$ is $f(x) < 0$?

$\textbf{(A) }\frac{17}{32}\qquad\textbf{(B) }\frac{11}{16}\qquad\textbf{(C) }\frac{7}{9}\qquad\textbf{(D) }\frac{7}{6}\qquad\textbf{(E) }\frac{25}{11}\qquad$

Solution 1

Looking through the solutions we can see that $f(\frac{25}{11})$ can be expressed as $f(\frac{25}{11} \cdot 11) = f(11) + f(\frac{25}{11})$ so using the prime numbers to piece together what we have we can get $10=11+f(\frac{25}{11})$, so $f(\frac{25}{11})=-1$ or $\boxed{E}$.

-Lemonie

Solution 2

We know that $f(2)=2$. Adding $f(1)$ to both sides, we get \begin{align*} f(2)+f(1)&=2+f(1)\\ f(2)&=2+f(1)\\ 2&=2+f(1)\\ f(1)&=0 \end{align*} Also \[f(2)+f\left(\frac{1}{2}\right)=f(1)=0 \implies 2+f\left(\frac{1}{2}\right)=0 \implies f\left(\frac{1}{2}\right) = -2\] \[f(3)+f\left(\frac{1}{3}\right)=f(1)=0 \implies 3+f\left(\frac{1}{3}\right)=0 \implies f\left(\frac{1}{3}\right) = -3\] \[f(11)+f\left(\frac{1}{11}\right)=f(1)=0 \implies 11+f\left(\frac{1}{11}\right)=0 \implies f\left(\frac{1}{11}\right) = -11\] In $\textbf{(A)}$ we have $f\left(\frac{17}{32}\right)=17+5f\left(\frac{1}{2}\right)=17-5(2)=7$. In $\textbf{(B)}$ we have $f\left(\frac{11}{16}\right)=11+4f\left(\frac{1}{2}\right)=11-4(2)=3$. In $\textbf{(C)}$ we have $f\left(\frac{7}{9}\right)=7+2f\left(\frac{1}{3}\right)=7-2(3)=1$. In $\textbf{(D)}$ we have $f\left(\frac{7}{6}\right)=7+f\left(\frac{1}{2}\right)+f\left(\frac{1}{3}\right)=7-2-3=2$. In $\textbf{(E)}$ we have $f\left(\frac{25}{11}\right)=10+f\left(\frac{1}{11}\right)=10-11=-1$. Thus, our answer is $\boxed{\textbf{(E)} \frac{25}{11}}$ ~JHawk0224

Video Solution by Punxsutawney Phil

https://youtu.be/8gGcj95rlWY

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png