Difference between revisions of "2021 AMC 12A Problems/Problem 18"
m (→Solution 2) |
(→Solution 2) |
||
Line 20: | Line 20: | ||
<cmath>f(3)+f\left(\frac{1}{3}\right)=f(1)=0 \implies 3+f\left(\frac{1}{3}\right)=0 \implies f\left(\frac{1}{3}\right) = -3</cmath> | <cmath>f(3)+f\left(\frac{1}{3}\right)=f(1)=0 \implies 3+f\left(\frac{1}{3}\right)=0 \implies f\left(\frac{1}{3}\right) = -3</cmath> | ||
<cmath>f(11)+f\left(\frac{1}{11}\right)=f(1)=0 \implies 11+f\left(\frac{1}{11}\right)=0 \implies f\left(\frac{1}{11}\right) = -11</cmath> | <cmath>f(11)+f\left(\frac{1}{11}\right)=f(1)=0 \implies 11+f\left(\frac{1}{11}\right)=0 \implies f\left(\frac{1}{11}\right) = -11</cmath> | ||
− | In <math>A)</math> we have <math>f\left(\frac{17}{32}\right)=17+5f\left(\frac{1}{2}\right)=17-5(2)=7</math>. | + | In <math>\textbf{(A)}</math> we have <math>f\left(\frac{17}{32}\right)=17+5f\left(\frac{1}{2}\right)=17-5(2)=7</math>. |
− | In <math>B)</math> we have <math>f\left(\frac{11}{16}\right)=11+4f\left(\frac{1}{2}\right)=11-4(2)=3</math>. | + | In <math>\textbf{(B)}</math> we have <math>f\left(\frac{11}{16}\right)=11+4f\left(\frac{1}{2}\right)=11-4(2)=3</math>. |
− | In <math>C)</math> we have <math>f\left(\frac{7}{9}\right)=7+2f\left(\frac{1}{3}\right)=7-2(3)=1</math>. | + | In <math>\textbf{(C)}</math> we have <math>f\left(\frac{7}{9}\right)=7+2f\left(\frac{1}{3}\right)=7-2(3)=1</math>. |
− | In <math>D)</math> we have <math>f\left(\frac{7}{6}\right)=7+f\left(\frac{1}{2}\right)+f\left(\frac{1}{3}\right)=7-2-3=2</math>. | + | In <math>\textbf{(D)}</math> we have <math>f\left(\frac{7}{6}\right)=7+f\left(\frac{1}{2}\right)+f\left(\frac{1}{3}\right)=7-2-3=2</math>. |
− | In <math>E)</math> we have <math>f\left(\frac{25}{11}\right)=10+f\left(\frac{1}{11}\right)=10-11=-1</math>. | + | In <math>\textbf{(E)}</math> we have <math>f\left(\frac{25}{11}\right)=10+f\left(\frac{1}{11}\right)=10-11=-1</math>. |
Thus, our answer is <math>\boxed{\textbf{(E)} \frac{25}{11}}</math> | Thus, our answer is <math>\boxed{\textbf{(E)} \frac{25}{11}}</math> | ||
~JHawk0224 | ~JHawk0224 |
Revision as of 15:29, 11 February 2021
Contents
[hide]Problem
Let be a function defined on the set of positive rational numbers with the property that for all positive rational numbers and . Furthermore, suppose that also has the property that for every prime number . For which of the following numbers is ?
Solution 1
Looking through the solutions we can see that can be expressed as so using the prime numbers to piece together what we have we can get , so or .
-Lemonie
Solution 2
We know that . Adding to both sides, we get Also In we have . In we have . In we have . In we have . In we have . Thus, our answer is ~JHawk0224
Video Solution by Punxsutawney Phil
See also
2021 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.