Difference between revisions of "2002 AMC 12A Problems/Problem 6"
Dairyqueenxd (talk | contribs) (→Solution 1) |
Dairyqueenxd (talk | contribs) (→Problem) |
||
Line 4: | Line 4: | ||
For how many positive integers <math>m</math> does there exist at least one positive integer n such that <math>m \cdot n \le m + n</math>? | For how many positive integers <math>m</math> does there exist at least one positive integer n such that <math>m \cdot n \le m + n</math>? | ||
− | <math> \textbf{(A) } 4\qquad \textbf{(B) } 6\qquad \textbf{(C) } 9\qquad \textbf{(D) } 12\qquad \textbf{(E) }</math> | + | <math> \textbf{(A) } 4\qquad \textbf{(B) } 6\qquad \textbf{(C) } 9\qquad \textbf{(D) } 12\qquad \textbf{(E) } \text{infinitely many} </math> |
==Solution== | ==Solution== |
Revision as of 11:33, 8 November 2021
- The following problem is from both the 2002 AMC 12A #6 and 2002 AMC 10A #4, so both problems redirect to this page.
Problem
For how many positive integers does there exist at least one positive integer n such that ?
Solution
Solution 1
For any we can pick , we get , therefore the answer is .
Solution 2
Another solution, slightly similar to this first one would be using Simon's Favorite Factoring Trick.
Let , then
This means that there are infinitely many numbers that can satisfy the inequality. So the answer is .
Solution 3
If we subtract from both sides of the equation, we get . Factor the left side to get . Divide both sides by and we get . The fraction if . There is an infinite amount of integers greater than 1, therefore the answer is .
See Also
2002 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 5 |
Followed by Problem 7 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2002 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.