Difference between revisions of "2002 AMC 12A Problems/Problem 1"
Dairyqueenxd (talk | contribs) (→Problem) |
Dairyqueenxd (talk | contribs) (→Solution 1) |
||
Line 8: | Line 8: | ||
==Solution 1== | ==Solution 1== | ||
− | We expand to get <math>2x^2-8x+3x-12+2x^2-12x+3x-18=0</math> which is <math>4x^2-14x-30=0</math> after combining like terms. Using the quadratic part of [[Vieta's Formulas]], we find the sum of the roots is <math>\frac{14}4 = \boxed{\ | + | We expand to get <math>2x^2-8x+3x-12+2x^2-12x+3x-18=0</math> which is <math>4x^2-14x-30=0</math> after combining like terms. Using the quadratic part of [[Vieta's Formulas]], we find the sum of the roots is <math>\frac{14}4 = \boxed{\textbf{(A) }7/2}</math>. |
==Solution 2== | ==Solution 2== |
Revision as of 12:06, 8 November 2021
- The following problem is from both the 2002 AMC 12A #1 and 2002 AMC 10A #10, so both problems redirect to this page.
Contents
[hide]Problem
Compute the sum of all the roots of
Solution 1
We expand to get which is after combining like terms. Using the quadratic part of Vieta's Formulas, we find the sum of the roots is .
Solution 2
Combine terms to get , hence the roots are and , thus our answer is .
See also
2002 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by First Question |
Followed by Problem 2 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2002 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.