Difference between revisions of "2017 AMC 10B Problems/Problem 21"

m (Clarity)
m (Wording)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
We note that by the converse of the Pythagorean Theorem, <math>\triangle ABC</math> is a right triangle with a right angle at <math>A</math>. Therefore, <math>AD = BD = CD = 5</math>, and <math>[ADB] = [ADC] = 12</math>. Since <math>A = rs, r = \frac As</math>, so the inradius of <math>\triangle ADB</math> is <math>\frac{12}{(5+5+6)/2} = \frac 32</math>, and the inradius of <math>\triangle ADC</math>  is <math>\frac{12}{(5+5+8)/2} = \frac 43</math>. Adding the two together, we have <math>\boxed{\textbf{(D) } \frac{17}6}</math>.
+
We note that by the converse of the Pythagorean Theorem, <math>\triangle ABC</math> is a right triangle with a right angle at <math>A</math>. Therefore, <math>AD = BD = CD = 5</math>, and <math>[ADB] = [ADC] = 12</math>. Since <math>A = rs,</math> we have <math>r = \frac As</math>, so the inradius of <math>\triangle ADB</math> is <math>\frac{12}{(5+5+6)/2} = \frac 32</math>, and the inradius of <math>\triangle ADC</math>  is <math>\frac{12}{(5+5+8)/2} = \frac 43</math>. Adding the two together, we have <math>\boxed{\textbf{(D) } \frac{17}6}</math>.
  
 
==Video Solution==
 
==Video Solution==

Revision as of 08:24, 21 August 2022

Problem

In $\triangle ABC$, $AB=6$, $AC=8$, $BC=10$, and $D$ is the midpoint of $\overline{BC}$. What is the sum of the radii of the circles inscribed in $\triangle ADB$ and $\triangle ADC$?

$\textbf{(A)}\ \sqrt{5}\qquad\textbf{(B)}\ \frac{11}{4}\qquad\textbf{(C)}\ 2\sqrt{2}\qquad\textbf{(D)}\ \frac{17}{6}\qquad\textbf{(E)}\ 3$

Solution

We note that by the converse of the Pythagorean Theorem, $\triangle ABC$ is a right triangle with a right angle at $A$. Therefore, $AD = BD = CD = 5$, and $[ADB] = [ADC] = 12$. Since $A = rs,$ we have $r = \frac As$, so the inradius of $\triangle ADB$ is $\frac{12}{(5+5+6)/2} = \frac 32$, and the inradius of $\triangle ADC$ is $\frac{12}{(5+5+8)/2} = \frac 43$. Adding the two together, we have $\boxed{\textbf{(D) } \frac{17}6}$.

Video Solution

https://youtu.be/EfKFDwTDRjs

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png