Difference between revisions of "2021 AMC 12A Problems/Problem 22"
MRENTHUSIASM (talk | contribs) m (→Solution 2 (Complex Numbers: Trigonometric Identities)) |
Mathboy282 (talk | contribs) (→Solution 3 (Trigonometric Identities)) |
||
(11 intermediate revisions by 3 users not shown) | |||
Line 2: | Line 2: | ||
Suppose that the roots of the polynomial <math>P(x)=x^3+ax^2+bx+c</math> are <math>\cos \frac{2\pi}7,\cos \frac{4\pi}7,</math> and <math>\cos \frac{6\pi}7</math>, where angles are in radians. What is <math>abc</math>? | Suppose that the roots of the polynomial <math>P(x)=x^3+ax^2+bx+c</math> are <math>\cos \frac{2\pi}7,\cos \frac{4\pi}7,</math> and <math>\cos \frac{6\pi}7</math>, where angles are in radians. What is <math>abc</math>? | ||
− | <math>\textbf{(A) }-\frac{3}{49} \qquad \textbf{(B) }-\frac{1}{28} \qquad \textbf{(C) }\frac{\sqrt[3]7}{64} \qquad \textbf{(D) }\frac{1}{32}\qquad \textbf{(E) }\frac{1}{28}</math> | + | <math>\textbf{(A) }{-}\frac{3}{49} \qquad \textbf{(B) }{-}\frac{1}{28} \qquad \textbf{(C) }\frac{\sqrt[3]7}{64} \qquad \textbf{(D) }\frac{1}{32}\qquad \textbf{(E) }\frac{1}{28}</math> |
==Solution 1 (Complex Numbers: Vieta's Formulas)== | ==Solution 1 (Complex Numbers: Vieta's Formulas)== | ||
Line 33: | Line 33: | ||
\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}&=-\frac12. | \cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}&=-\frac12. | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
− | Note that <math>\theta=\frac{2\pi}{7},\frac{4\pi}{7},\frac{6\pi}{7}</math> are roots of <cmath>\cos\theta+\cos(2\theta)+\cos(3\theta)=-\frac12, \hspace{15mm} (\bigstar)</cmath> as they can be verified either algebraically (by the identity <math>\cos\theta=\cos(-\theta)=\cos(2\pi-\theta) | + | Note that <math>\theta=\frac{2\pi}{7},\frac{4\pi}{7},\frac{6\pi}{7}</math> are roots of <cmath>\cos\theta+\cos(2\theta)+\cos(3\theta)=-\frac12, \hspace{15mm} (\bigstar)</cmath> as they can be verified either algebraically (by the identity <math>\cos\theta=\cos(-\theta)=\cos(2\pi-\theta)</math>) or geometrically (by the graph below). |
<asy> | <asy> | ||
/* Made by MRENTHUSIASM */ | /* Made by MRENTHUSIASM */ | ||
Line 79: | Line 79: | ||
draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); | draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); | ||
draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); | draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); | ||
− | label("Re",(xMax,0), | + | label("Re",(xMax,0),(2,0)); |
− | label("Im",(0,yMax), | + | label("Im",(0,yMax),(0,2)); |
//The n such that we're taking the nth roots of unity | //The n such that we're taking the nth roots of unity | ||
Line 131: | Line 131: | ||
Therefore, we get <math>a = -\left(-\frac12\right) = \frac12.</math></li><p> | Therefore, we get <math>a = -\left(-\frac12\right) = \frac12.</math></li><p> | ||
<li>Solve for <math>b:</math> By Vieta's Formulas, we have <math>b = \cos \frac{2\pi}7 \cos \frac{4\pi}7 + \cos \frac{2\pi}7 \cos \frac{6\pi}7 + \cos \frac{4\pi}7 \cos \frac{6\pi}7.</math><p> | <li>Solve for <math>b:</math> By Vieta's Formulas, we have <math>b = \cos \frac{2\pi}7 \cos \frac{4\pi}7 + \cos \frac{2\pi}7 \cos \frac{6\pi}7 + \cos \frac{4\pi}7 \cos \frac{6\pi}7.</math><p> | ||
− | Note that <math>\cos \alpha \cos \beta = \frac{ \cos \left(\alpha + \beta\right) + \cos \left(\alpha - \beta\right) }{2}</math> for all <math>\alpha</math> and <math>\beta.</math> Therefore, we get <cmath>b=\frac{\cos \frac{6\pi}7 + \cos \frac{2\pi}7}2 + \frac{\cos \frac{ | + | Note that <math>\cos \alpha \cos \beta = \frac{ \cos \left(\alpha + \beta\right) + \cos \left(\alpha - \beta\right) }{2}</math> for all <math>\alpha</math> and <math>\beta.</math> Therefore, we get <cmath>b=\frac{\cos \frac{6\pi}7 + \cos \frac{2\pi}7}2 + \frac{\cos \frac{6\pi}7 + \cos \frac{4\pi}7}2 + \frac{\cos \frac{4\pi}7 + \cos \frac{2\pi}7}2=\cos \frac{2\pi}7 + \cos \frac{4\pi}7 + \cos \frac{6\pi}7=-\frac12.</cmath></li> |
− | <li>Solve for <math>c:</math> By Vieta's Formulas, we have <math>c = -\cos \frac{2\pi}7 \cos \frac{4\pi}7 \cos \frac{8\pi}7.</math> <p> | + | <li>Solve for <math>c:</math> By Vieta's Formulas, we have <math>c = -\cos \frac{2\pi}7 \cos \frac{4\pi}7 \cos \frac{6\pi}7=-\cos \frac{2\pi}7 \cos \frac{4\pi}7 \cos \frac{8\pi}7.</math> <p> |
We multiply both sides by <math>8 \sin{\frac{2\pi}{7}},</math> then repeatedly apply the angle addition formula for sine: | We multiply both sides by <math>8 \sin{\frac{2\pi}{7}},</math> then repeatedly apply the angle addition formula for sine: | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
Line 146: | Line 146: | ||
Finally, the answer is <math>abc=\frac12\cdot\left(-\frac12\right)\cdot\left(-\frac18\right)=\boxed{\textbf{(D) }\frac{1}{32}}.</math> | Finally, the answer is <math>abc=\frac12\cdot\left(-\frac12\right)\cdot\left(-\frac18\right)=\boxed{\textbf{(D) }\frac{1}{32}}.</math> | ||
− | ~Tucker | + | ~Tucker |
− | |||
− | |||
== Solution 4 (Product-to-Sum Identity) == | == Solution 4 (Product-to-Sum Identity) == | ||
− | Note sum of roots of unity equal zero, sum of real parts equal zero, and <math>\operatorname{Re}\left(\omega^{m}\right) = \operatorname{Re}\left(\omega^{-m}\right).</math> We have <cmath>\cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} = \frac12(0 - \cos 0) = -\frac12,</cmath> so <math>a = \frac{1}{2}.</math> | + | Note that the sum of the roots of unity equal zero, so the sum of their real parts equal zero, and <math>\operatorname{Re}\left(\omega^{m}\right) = \operatorname{Re}\left(\omega^{-m}\right).</math> We have <cmath>\cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} = \frac12(0 - \cos 0) = -\frac12,</cmath> so <math>a = \frac{1}{2}.</math> |
By the Product-to-Sum Identity, we have | By the Product-to-Sum Identity, we have | ||
Line 157: | Line 155: | ||
\cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7} + \cos \frac{2 \pi}{7} \cos \frac{6 \pi}{7} + \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7} &= \frac{1}{2} \left(2 \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} + \cos \frac{8 \pi}{7} + \cos \frac{10 \pi}{7}\right) \\ | \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7} + \cos \frac{2 \pi}{7} \cos \frac{6 \pi}{7} + \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7} &= \frac{1}{2} \left(2 \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} + \cos \frac{8 \pi}{7} + \cos \frac{10 \pi}{7}\right) \\ | ||
&= \frac{1}{2}\left(2 \cos \frac{2 \pi}{7} + 2 \cos \frac{4 \pi}{7} + 2 \cos \frac{6 \pi}{7}\right) \\ | &= \frac{1}{2}\left(2 \cos \frac{2 \pi}{7} + 2 \cos \frac{4 \pi}{7} + 2 \cos \frac{6 \pi}{7}\right) \\ | ||
+ | &= \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} \\ | ||
&= -\frac{1}{2}, | &= -\frac{1}{2}, | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
Line 172: | Line 171: | ||
Finally, we get <math>abc=\boxed{\textbf{(D) }\frac{1}{32}}.</math> | Finally, we get <math>abc=\boxed{\textbf{(D) }\frac{1}{32}}.</math> | ||
− | ~ ccx09 | + | ~ccx09 |
− | + | == Video Solution by OmegaLearn (Euler's Identity + Vieta's Formula) == | |
+ | https://youtu.be/Im_WTIK0tss | ||
− | + | ~ pi_is_3.14 | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | == Video Solution by MRENTHUSIASM (English & Chinese) == | |
+ | https://youtu.be/X6oqEpFAJBk | ||
− | ~MRENTHUSIASM | + | ~MRENTHUSIASM |
− | |||
− | |||
− | |||
− | |||
− | |||
==See also== | ==See also== |
Latest revision as of 01:25, 21 September 2023
Contents
- 1 Problem
- 2 Solution 1 (Complex Numbers: Vieta's Formulas)
- 3 Solution 2 (Complex Numbers: Trigonometric Identities)
- 4 Solution 3 (Trigonometric Identities)
- 5 Solution 4 (Product-to-Sum Identity)
- 6 Video Solution by OmegaLearn (Euler's Identity + Vieta's Formula)
- 7 Video Solution by MRENTHUSIASM (English & Chinese)
- 8 See also
Problem
Suppose that the roots of the polynomial are and , where angles are in radians. What is ?
Solution 1 (Complex Numbers: Vieta's Formulas)
Let Since is a th root of unity, we have For all integers note that and It follows that By geometric series, we conclude that Alternatively, recall that the th roots of unity satisfy the equation By Vieta's Formulas, the sum of these seven roots is
As a result, we get Let By Vieta's Formulas, the answer is ~MRENTHUSIASM (inspired by Peeyush Pandaya et al)
Solution 2 (Complex Numbers: Trigonometric Identities)
Let In Solution 1, we conclude that so Since holds for all this sum becomes Note that are roots of as they can be verified either algebraically (by the identity ) or geometrically (by the graph below). Let It follows that Rewriting in terms of we have in which the roots are
Therefore, we obtain from which
~MRENTHUSIASM (inspired by Peeyush Pandaya et al)
Solution 3 (Trigonometric Identities)
We solve for and separately:
- Solve for By Vieta's Formulas, we have
The real parts of the th roots of unity are and they sum to
Note that for all Excluding the other six roots add to from which Therefore, we get
- Solve for By Vieta's Formulas, we have
Note that for all and Therefore, we get
- Solve for By Vieta's Formulas, we have
We multiply both sides by then repeatedly apply the angle addition formula for sine: Therefore, we get
Finally, the answer is
~Tucker
Solution 4 (Product-to-Sum Identity)
Note that the sum of the roots of unity equal zero, so the sum of their real parts equal zero, and We have so
By the Product-to-Sum Identity, we have so
By the Product-to-Sum Identity, we have so
Finally, we get
~ccx09
Video Solution by OmegaLearn (Euler's Identity + Vieta's Formula)
~ pi_is_3.14
Video Solution by MRENTHUSIASM (English & Chinese)
~MRENTHUSIASM
See also
2021 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.