Difference between revisions of "2018 AMC 10A Problems/Problem 10"

(Solution 10 (Solution 1 but alternate))
(Solution 4)
(10 intermediate revisions by 3 users not shown)
Line 11: Line 11:
 
</math>
 
</math>
  
==Solution 10 (Solution 1 but alternate)==
+
==Solution 1==
  
 
We let <math>a=\sqrt{49-x^2}+\sqrt{25-x^2}</math>; in other words, we want to find <math>a</math>. We know that <math>a\cdot3=\left(\sqrt{49-x^2}+\sqrt{25-x^2}\right)\cdot\left(\sqrt{49-x^2}-\sqrt{25-x^2}\right)=\left(\sqrt{49-x^2}\right)^2-\left(\sqrt{25-x^2}\right)^2=\left(49-x^2\right)-\left(25-x^2\right)=24.</math> Thus, <math>a=\boxed{8}</math>.  
 
We let <math>a=\sqrt{49-x^2}+\sqrt{25-x^2}</math>; in other words, we want to find <math>a</math>. We know that <math>a\cdot3=\left(\sqrt{49-x^2}+\sqrt{25-x^2}\right)\cdot\left(\sqrt{49-x^2}-\sqrt{25-x^2}\right)=\left(\sqrt{49-x^2}\right)^2-\left(\sqrt{25-x^2}\right)^2=\left(49-x^2\right)-\left(25-x^2\right)=24.</math> Thus, <math>a=\boxed{8}</math>.  
  
 
~Technodoggo
 
~Technodoggo
 +
 +
==Solution 2==
 +
Let <math>a = \sqrt{49-x^2}</math>, and <math>b = \sqrt{25-x^2}</math>. Solving for the constants in terms of x, a , and b, we get <math>a^2 + x^2 = 49</math>, and <math>b^2 + x^2 = 25</math>. Subtracting the second equation from the first gives us <math>a^2 - b^2 = 24</math>. Difference of squares gives us <math>(a+b)(a-b) = 24</math>. Since we want to find <math>a+b = \sqrt{49-x^2}+\sqrt{25-x^2}</math>, and we know <math>a-b = 3</math>, we get <math>3(a+b) = 24</math>, so <math>a+b = \boxed{\textbf{(A) }8}</math>
 +
 +
 +
~idk12345678
 +
 +
==Solution 3==
 +
We can substitute <math>25 - x^2</math> for <math>a</math>, thus turning the equation into <math>\sqrt{a+24} - \sqrt{a} = 3</math>. Moving the <math>\sqrt{a}</math> to the other side and squaring gives us <math>a + 24 = 9 + 6\sqrt{a} + a</math>, solving for <math>a</math> gives us 25/4. We substitute this value into the expression they asked us to evaluate giving 8.
 +
 +
~ SAMANTAP
 +
 +
==Solution 4==
 +
Move <math>-\sqrt{25-x^2}</math> to the right to get <math>\sqrt{49-x^2} = 3 + \sqrt{25-x^2}</math>.
 +
Square both sides to get <math>49-x^2 = 9 + 6\sqrt{25-x^2} + (25-x^2)</math>.
 +
Simplify to get <math>15 = 6\sqrt{25-x^2}</math>, or <math>\frac{5}{2} = \sqrt{25-x^2}</math>
 +
Substitute this back into the original equation tog et that <math>\sqrt{49-x^2} = \frac{11}{2}</math>. The answer is <math>\boxed{\textbf{(A) }8}</math>
 +
 +
~Failure.net
  
 
==Video Solution (HOW TO THINK CREATIVELY!)==
 
==Video Solution (HOW TO THINK CREATIVELY!)==

Revision as of 14:14, 23 July 2024

Problem

Suppose that real number $x$ satisfies \[\sqrt{49-x^2}-\sqrt{25-x^2}=3\]What is the value of $\sqrt{49-x^2}+\sqrt{25-x^2}$?

$\textbf{(A) }8\qquad \textbf{(B) }\sqrt{33}+8\qquad \textbf{(C) }9\qquad \textbf{(D) }2\sqrt{10}+4\qquad \textbf{(E) }12\qquad$

Solution 1

We let $a=\sqrt{49-x^2}+\sqrt{25-x^2}$; in other words, we want to find $a$. We know that $a\cdot3=\left(\sqrt{49-x^2}+\sqrt{25-x^2}\right)\cdot\left(\sqrt{49-x^2}-\sqrt{25-x^2}\right)=\left(\sqrt{49-x^2}\right)^2-\left(\sqrt{25-x^2}\right)^2=\left(49-x^2\right)-\left(25-x^2\right)=24.$ Thus, $a=\boxed{8}$.

~Technodoggo

Solution 2

Let $a = \sqrt{49-x^2}$, and $b = \sqrt{25-x^2}$. Solving for the constants in terms of x, a , and b, we get $a^2 + x^2 = 49$, and $b^2 + x^2 = 25$. Subtracting the second equation from the first gives us $a^2 - b^2 = 24$. Difference of squares gives us $(a+b)(a-b) = 24$. Since we want to find $a+b = \sqrt{49-x^2}+\sqrt{25-x^2}$, and we know $a-b = 3$, we get $3(a+b) = 24$, so $a+b = \boxed{\textbf{(A) }8}$


~idk12345678

Solution 3

We can substitute $25 - x^2$ for $a$, thus turning the equation into $\sqrt{a+24} - \sqrt{a} = 3$. Moving the $\sqrt{a}$ to the other side and squaring gives us $a + 24 = 9 + 6\sqrt{a} + a$, solving for $a$ gives us 25/4. We substitute this value into the expression they asked us to evaluate giving 8.

~ SAMANTAP

Solution 4

Move $-\sqrt{25-x^2}$ to the right to get $\sqrt{49-x^2} = 3 + \sqrt{25-x^2}$. Square both sides to get $49-x^2 = 9 + 6\sqrt{25-x^2} + (25-x^2)$. Simplify to get $15 = 6\sqrt{25-x^2}$, or $\frac{5}{2} = \sqrt{25-x^2}$ Substitute this back into the original equation tog et that $\sqrt{49-x^2} = \frac{11}{2}$. The answer is $\boxed{\textbf{(A) }8}$

~Failure.net

Video Solution (HOW TO THINK CREATIVELY!)

https://youtu.be/P-atxiiTw2I

~Education, the Study of Everything



Video Solutions

Video Solution 1

https://youtu.be/ba6w1OhXqOQ?t=1403

~ pi_is_3.14

Video Solution 2

https://youtu.be/zQG70XKAdeA ~ North America Math Contest Go Go Go

Video Solution 3

https://youtu.be/ZiZVIMmo260

Video Solution 4

https://youtu.be/5cA87rbzFdw

~savannahsolver

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions