2018 AMC 10A Problems

Problem 1

What is the value of \[\left(\left((2+1)^{-1}+1\right)^{-1}+1\right)^{-1}+1?\]$\textbf{(A) } \frac58 \qquad \textbf{(B) }\frac{11}7 \qquad \textbf{(C) } \frac85 \qquad \textbf{(D) } \frac{18}{11} \qquad \textbf{(E) } \frac{15}8$


Problem 2

Liliane has $50\%$ more soda than Jacqueline, and Alice has $25\%$ more soda than Jacqueline. What is the relationship between the amounts of soda that Liliane and Alice have?

$\textbf{(A)}$ Liliane has $20\%$ more soda than Alice.

$\textbf{(B)}$ Liliane has $25\%$ more soda than Alice.

$\textbf{(C)}$ Liliane has $45\%$ more soda than Alice.

$\textbf{(D)}$ Liliane has $75\%$ more soda than Alice.

$\textbf{(E)}$ Liliane has $100\%$ more soda than Alice.


Problem 3

A unit of blood expires after $10!=10\cdot 9 \cdot 8 \cdots 1$ seconds. Yasin donates a unit of blood at noon of January 1. On what day does his unit of blood expire?

$\textbf{(A) }\text{January 2}\qquad\textbf{(B) }\text{January 12}\qquad\textbf{(C) }\text{January 22}\qquad\textbf{(D) }\text{February 11}\qquad\textbf{(E) }\text{February 12}$


Problem 4

How many ways can a student schedule 3 mathematics courses -- algebra, geometry, and number theory -- in a 6-period day if no two mathematics courses can be taken in consecutive periods? (What courses the student takes during the other 3 periods is of no concern here.)

$\textbf{(A) }3\qquad\textbf{(B) }6\qquad\textbf{(C) }12\qquad\textbf{(D) }18\qquad\textbf{(E) }24$


Problem 5

Alice, Bob, and Charlie were on a hike and were wondering how far away the nearest town was. When Alice said, "We are at least 6 miles away," Bob replied, "We are at most 5 miles away." Charlie then remarked, "Actually the nearest town is at most 4 miles away." It turned out that none of the three statements were true. Let $d$ be the distance in miles to the nearest town. Which of the following intervals is the set of all possible values of $d$?

$\textbf{(A) }   (0,4)   \qquad        \textbf{(B) }   (4,5)   \qquad    \textbf{(C) }   (4,6)   \qquad   \textbf{(D) }  (5,6)  \qquad  \textbf{(E) }   (5,\infty)$


Problem 6

Sangho uploaded a video to a website where viewers can vote that they like or dislike a video. Each video begins with a score of 0, and the score increases by 1 for each like vote and decreases by 1 for each dislike vote. At one point Sangho saw that his video had a score of 90, and that $65\%$ of the votes cast on his video were like votes. How many votes had been cast on Sangho's video at that point?

$\textbf{(A) }   200   \qquad        \textbf{(B) }   300   \qquad    \textbf{(C) }   400   \qquad   \textbf{(D) }  500  \qquad  \textbf{(E) }   600$


Problem 7

For how many (not necessarily positive) integer values of $n$ is the value of $4000\cdot \left(\tfrac{2}{5}\right)^n$ an integer?

$\textbf{(A) }3 \qquad \textbf{(B) }4 \qquad \textbf{(C) }6 \qquad \textbf{(D) }8 \qquad \textbf{(E) }9 \qquad$


Problem 8

Joe has a collection of 23 coins, consisting of 5-cent coins, 10-cent coins, and 25-cent coins. He has 3 more 10-cent coins than 5-cent coins, and the total value of his collection is 320 cents. How many more 25-cent coins does Joe have than 5-cent coins?

$\textbf{(A) }   0   \qquad        \textbf{(B) }   1   \qquad    \textbf{(C) }   2   \qquad   \textbf{(D) }  3  \qquad  \textbf{(E) }   4$


Problem 9

All of the triangles in the diagram below are similar to isosceles triangle $ABC$, in which $AB=AC$. Each of the 7 smallest triangles has area 1, and $\triangle ABC$ has area 40. What is the area of trapezoid $DBCE$?

[asy] unitsize(5); dot((0,0)); dot((60,0)); dot((50,10)); dot((10,10)); dot((30,30)); draw((0,0)--(60,0)--(50,10)--(30,30)--(10,10)--(0,0)); draw((10,10)--(50,10)); label("$B$",(0,0),SW); label("$C$",(60,0),SE); label("$E$",(50,10),E); label("$D$",(10,10),W); label("$A$",(30,30),N); draw((10,10)--(15,15)--(20,10)--(25,15)--(30,10)--(35,15)--(40,10)--(45,15)--(50,10)); draw((15,15)--(45,15)); [/asy]

$\textbf{(A) }   16   \qquad        \textbf{(B) }   18   \qquad    \textbf{(C) }   20   \qquad   \textbf{(D) }  22 \qquad  \textbf{(E) }   24$


Problem 10

Suppose that real number $x$ satisfies \[\sqrt{49-x^2}-\sqrt{25-x^2}=3\]. What is the value of $\sqrt{49-x^2}+\sqrt{25-x^2}$?

$\textbf{(A) }8 \qquad \textbf{(B) }\sqrt{33}+8\qquad \textbf{(C) }9 \qquad \textbf{(D) }2\sqrt{10}+4 \qquad \textbf{(E) }12 \qquad$


Problem 11

When $7$ fair standard $6$-sided die are thrown, the probability that the sum of the numbers on the top faces is $10$ can be written as \[\frac{n}{6^{7}},\] where $n$ is a positive integer. What is $n$?

$\textbf{(A) }42\qquad \textbf{(B) }49\qquad \textbf{(C) }56\qquad \textbf{(D) }63\qquad \textbf{(E) }84\qquad$


Problem 12

How many ordered pairs of real numbers $(x,y)$ satisfy the following system of equations? \[x+3y=3\] \[||x|-|y||=1\]

$\textbf{(A) }1\qquad \textbf{(B) }2\qquad \textbf{(C) }3\qquad \textbf{(D) }4\qquad \textbf{(E) }8\qquad$


Problem 13

A paper triangle with sides of lengths 3, 4, and 5 inches, as shown, is folded so that point $A$ falls on point $B$. What is the length in inches of the crease? [asy] draw((0,0)--(4,0)--(4,3)--(0,0)); label("$A$", (0,0), SW); label("$B$", (4,3), NE); label("$C$", (4,0), SE); label("$4$", (2,0), S); label("$3$", (4,1.5), E); label("$5$", (2,1.5), NW); fill(origin--(0,0)--(4,3)--(4,0)--cycle, gray); [/asy] $\textbf{(A) }   1+\frac12 \sqrt2   \qquad        \textbf{(B) }   \sqrt3   \qquad    \textbf{(C) }   \frac74   \qquad   \textbf{(D) }  \frac{15}{8} \qquad  \textbf{(E) }   2$


Problem 14

What is the greatest integer less than or equal to \[\frac{3^{100}+2^{100}}{3^{96}+2^{96}}?\]

$\textbf{(A) }80\qquad \textbf{(B) }81 \qquad \textbf{(C) }96 \qquad \textbf{(D) }97 \qquad \textbf{(E) }625\qquad$


Problem 15

Two circles of radius 5 are externally tangent to each other and are internally tangent to a circle of radius 13 at points $A$ and $B$, as shown in the diagram. The distance $AB$ can be written in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?

[asy] draw(circle((0,0),13)); draw(circle((5,-6.2),5)); draw(circle((-5,-6.2),5)); label("$B$", (9.5,-9.5), S); label("$A$", (-9.5,-9.5), S); [/asy]

$\textbf{(A) }   21   \qquad    \textbf{(B) }  29   \qquad    \textbf{(C) }  58   \qquad   \textbf{(D) } 69 \qquad  \textbf{(E) }   93$


Problem 16

Right triangle $ABC$ has leg lengths $AB=20$ and $BC=21$. Including $\overline{AB}$ and $\overline{BC}$, how many line segments with integer length can be drawn from vertex $B$ to a point on hypotenuse $\overline{AC}$?

$\textbf{(A) }5 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }13 \qquad \textbf{(E) }15 \qquad$


Problem 17

Let $S$ be a set of 6 integers taken from $\{1,2,\dots,12\}$ with the property that if $a$ and $b$ are elements of $S$ with $a<b$, then $b$ is not a multiple of $a$. What is the least possible value of an element in $S?$

$\textbf{(A)}\ 2\qquad\textbf{(B)}\ 3\qquad\textbf{(C)}\ 4\qquad\textbf{(D)}\ 5\qquad\textbf{(E)}\ 7$


Problem 18

How many nonnegative integers can be written in the form \[a_7\cdot3^7+a_6\cdot3^6+a_5\cdot3^5+a_4\cdot3^4+a_3\cdot3^3+a_2\cdot3^2+a_1\cdot3^1+a_0\cdot3^0,\] where $a_i\in \{-1,0,1\}$ for $0\le i \le 7$?

$\textbf{(A) } 512 \qquad  \textbf{(B) } 729 \qquad  \textbf{(C) } 1094 \qquad  \textbf{(D) } 3281 \qquad  \textbf{(E) } 59,048$


Problem 19

A number $m$ is randomly selected from the set $\{11,13,15,17,19\}$, and a number $n$ is randomly selected from $\{1999,2000,2001,\ldots,2018\}$. What is the probability that $m^n$ has a units digit of $1$?

$\textbf{(A) }   \frac{1}{5}   \qquad        \textbf{(B) }   \frac{1}{4}   \qquad    \textbf{(C) }   \frac{3}{10}   \qquad   \textbf{(D) } \frac{7}{20} \qquad  \textbf{(E) }   \frac{2}{5}$


Problem 20

A scanning code consists of a $7 \times 7$ grid of squares, with some of its squares colored black and the rest colored white. There must be at least one square of each color in this grid of $49$ squares. A scanning code is called $\text{symmetric}$ if its look does not change when the entire square is rotated by a multiple of $90 ^{\circ}$ counterclockwise around its center, nor when it is reflected across a line joining opposite corners or a line joining midpoints of opposite sides. What is the total number of possible symmetric scanning codes?

$\textbf{(A)} \text{ 510} \qquad \textbf{(B)} \text{ 1022} \qquad \textbf{(C)} \text{ 8190} \qquad \textbf{(D)} \text{ 8192} \qquad \textbf{(E)} \text{ 65,534}$


Problem 21

Which of the following describes the set of values of $a$ for which the curves $x^2+y^2=a^2$ and $y=x^2-a$ in the real $xy$-plane intersect at exactly $3$ points?

$\textbf{(A) }a=\frac14 \qquad \textbf{(B) }\frac14 < a < \frac12 \qquad \textbf{(C) }a>\frac14 \qquad \textbf{(D) }a=\frac12 \qquad \textbf{(E) }a>\frac12 \qquad$


Problem 22

Let $a, b, c,$ and $d$ be positive integers such that $\gcd(a, b)=24$, $\gcd(b, c)=36$, $\gcd(c, d)=54$, and $70<\gcd(d, a)<100$. Which of the following must be a divisor of $a$?

$\textbf{(A)} \text{ 5} \qquad \textbf{(B)} \text{ 7} \qquad \textbf{(C)} \text{ 11} \qquad \textbf{(D)} \text{ 13} \qquad \textbf{(E)} \text{ 17}$


Problem 23

Farmer Pythagoras has a field in the shape of a right triangle. The right triangle's legs have lengths 3 and 4 units. In the corner where those sides meet at a right angle, he leaves a small unplanted square $S$ so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from $S$ to the hypotenuse is 2 units. What fraction of the field is planted?

[asy] draw((0,0)--(4,0)--(0,3)--(0,0)); draw((0,0)--(0.3,0)--(0.3,0.3)--(0,0.3)--(0,0)); fill(origin--(0.3,0)--(0.3,0.3)--(0,0.3)--cycle, gray); label("$4$", (2,0), N); label("$3$", (0,1.5), E); label("$2$", (.8,1), E); label("$S$", (0,0), NE); draw((0.3,0.3)--(1.4,1.9), dashed); [/asy]

$\textbf{(A) }   \frac{25}{27}   \qquad        \textbf{(B) }   \frac{26}{27}   \qquad    \textbf{(C) }   \frac{73}{75}   \qquad   \textbf{(D) } \frac{145}{147} \qquad  \textbf{(E) }   \frac{74}{75}$


Problem 24

Triangle $ABC$ with $AB=50$ and $AC=10$ has area $120$. Let $D$ be the midpoint of $\overline{AB}$, and let $E$ be the midpoint of $\overline{AC}$. The angle bisector of $\angle BAC$ intersects $\overline{DE}$ and $\overline{BC}$ at $F$ and $G$, respectively. What is the area of quadrilateral $FDBG$?

$\textbf{(A) }60 \qquad \textbf{(B) }65 \qquad \textbf{(C) }70 \qquad \textbf{(D) }75 \qquad \textbf{(E) }80 \qquad$


Problem 25

For a positive integer $n$ and nonzero digits $a$, $b$, and $c$, let $A_n$ be the $n$-digit integer each of whose digits is equal to $a$; let $B_n$ be the $n$-digit integer each of whose digits is equal to $b$, and let $C_n$ be the $2n$-digit (not $n$-digit) integer each of whose digits is equal to $c$. What is the greatest possible value of $a + b + c$ for which there are at least two values of $n$ such that $C_n - B_n = A_n^2$?

$\textbf{(A)} \text{ 12} \qquad \textbf{(B)} \text{ 14} \qquad \textbf{(C)} \text{ 16} \qquad \textbf{(D)} \text{ 18} \qquad \textbf{(E)} \text{ 20}$


See also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
2017 AMC 10B
Followed by
2018 AMC 10B
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS