Difference between revisions of "2021 AMC 12A Problems/Problem 22"

(Reformatted all solutions, and arranged solutions based on thoroughness. Let me know if anyone is unhappy with this.)
(Easy Video Solution by Scholars Foundation Without complex number and Euler's identity (Using Trigonometry + Vieta's Formula))
 
(20 intermediate revisions by 4 users not shown)
Line 2: Line 2:
 
Suppose that the roots of the polynomial <math>P(x)=x^3+ax^2+bx+c</math> are <math>\cos \frac{2\pi}7,\cos \frac{4\pi}7,</math> and <math>\cos \frac{6\pi}7</math>, where angles are in radians. What is <math>abc</math>?
 
Suppose that the roots of the polynomial <math>P(x)=x^3+ax^2+bx+c</math> are <math>\cos \frac{2\pi}7,\cos \frac{4\pi}7,</math> and <math>\cos \frac{6\pi}7</math>, where angles are in radians. What is <math>abc</math>?
  
<math>\textbf{(A) }-\frac{3}{49} \qquad \textbf{(B) }-\frac{1}{28} \qquad \textbf{(C) }\frac{\sqrt[3]7}{64} \qquad \textbf{(D) }\frac{1}{32}\qquad \textbf{(E) }\frac{1}{28}</math>
+
<math>\textbf{(A) }{-}\frac{3}{49} \qquad \textbf{(B) }{-}\frac{1}{28} \qquad \textbf{(C) }\frac{\sqrt[3]7}{64} \qquad \textbf{(D) }\frac{1}{32}\qquad \textbf{(E) }\frac{1}{28}</math>
  
==Solution 4 (Complex Numbers)==
+
==Solution 1 (Complex Numbers: Vieta's Formulas)==
By geometric series, we have <cmath>\sum_{k=0}^{6}e^{\frac{2k\pi i}{7}}=\frac{1-1}{1-e^{\frac{2\pi i}{7}}}=0.</cmath>
+
Let <math>z=e^{\frac{2\pi i}{7}}.</math> Since <math>z</math> is a <math>7</math>th root of unity, we have <math>z^7=1.</math> For all integers <math>k,</math> note that <math>\cos\frac{2k\pi}{7}=\operatorname{Re}\left(z^k\right)=\operatorname{Re}\left(z^{-k}\right)</math> and <math>\sin\frac{2k\pi}{7}=\operatorname{Im}\left(z^k\right)=-\operatorname{Im}\left(z^{-k}\right).</math> It follows that
Alternatively, note that the <math>7</math>th roots of unity are <math>z=e^{\frac{2k\pi i}{7}}</math> for <math>k\in\{0,1,2,\cdots,6\},</math> in which <math>z^7-1=0.</math> By Vieta's Formulas, the sum of these seven roots is <math>0.</math>
 
 
 
It follows that the real parts of these complex numbers must sum to <math>0,</math> so we get <math>\sum_{k=0}^{6}\cos\frac{2k\pi}{7}=0,</math> or <cmath>\sum_{k=1}^{6}\cos\frac{2k\pi}{7}=-1.</cmath>
 
Since <math>\cos\theta=\cos(2\pi-\theta)</math> holds for all <math>\theta,</math> we can rewrite this as
 
<cmath>\begin{align*}
 
\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}+\underbrace{\cos\frac{8\pi}{7}}_{\cos\tfrac{6\pi}{7}}+\underbrace{\cos\frac{10\pi}{7}}_{\cos\tfrac{4\pi}{7}}+\underbrace{\cos\frac{12\pi}{7}}_{\cos\tfrac{2\pi}{7}}&=-1\\
 
2\left(\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}\right)&=-1\\
 
\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}&=-\frac12.
 
\end{align*}</cmath>
 
Two solutions follow from here:
 
 
 
===Solution 4.1 (Trigonometric Identities)===
 
We know that <math>\theta=\frac{2\pi}{7},\frac{4\pi}{7},\frac{6\pi}{7}</math> are roots of <cmath>\cos\theta+\cos(2\theta)+\cos(3\theta)=-\frac12, \hspace{15mm} (*)</cmath> as they can be verified algebraically (by the identity <math>\cos\theta=\cos(-\theta)=\cos(2\pi-\theta)</math> for all <math>\theta</math>) or geometrically (by the <b>Remark</b> section).
 
 
 
Let <math>x=\cos\theta.</math> It follows that
 
<cmath>\begin{align*}
 
\cos(2\theta)&=2\cos^2\theta-1 \\
 
&=2x^2-1, \\
 
\cos(3\theta)&=\cos(2\theta+\theta) \\
 
&=\cos(2\theta)\cos\theta-\sin(2\theta)\sin\theta \\
 
&=\cos(2\theta)\cos\theta-2\sin^2\theta\cos\theta \\
 
&=\cos(2\theta)\cos\theta-2\left(1-\cos^2\theta\right)\cos\theta \\
 
&=\left(2x^2-1\right)x-2\left(1-x^2\right)x \\
 
&=2x^3-x-2x+2x^3 \\
 
&=4x^3-3x.
 
\end{align*}</cmath>
 
Rewriting <math>(*)</math> in terms of <math>x,</math> we have
 
<cmath>\begin{align*}
 
x+\left(2x^2-1\right)+\left(4x^3-3x\right)&=-\frac12 \\
 
4x^3+2x^2-2x-\frac12&=0 \\
 
x^3+\frac12 x^2 - \frac12 x - \frac18 &= 0,
 
\end{align*}</cmath>
 
in which the roots are <math>x=\cos\frac{2\pi}{7},\cos\frac{4\pi}{7},\cos\frac{6\pi}{7}.</math>
 
 
 
Therefore, we obtain <math>(a,b,c)=\left(\frac12,-\frac12,-\frac18\right),</math> from which <math>abc=\boxed{\textbf{(D) }\frac{1}{32}}.</math>
 
 
 
~MRENTHUSIASM (inspired by Peeyush Pandaya et al)
 
 
 
===Solution 4.2 (Vieta's Formulas)===
 
Let <math>z=e^{\frac{2\pi i}{7}}.</math> Since <math>z</math> is a <math>7</math>th root of unity, it follows that <math>z^7=1.</math> Geometrically (shown in the <b>Remark</b> section), we get
 
 
<cmath>\begin{alignat*}{4}
 
<cmath>\begin{alignat*}{4}
\cos{\frac{2\pi}{7}} &= \frac{z+z^6}{2} &&= \frac{z+z^{-1}}{2}, \\
+
\cos\frac{2\pi}{7} &= \frac{z+z^{-1}}{2} &&= \frac{z+z^6}{2}, \\
\cos{\frac{4\pi}{7}} &= \frac{z^2+z^5}{2} &&= \frac{z^2+z^{-2}}{2}, \\
+
\cos\frac{4\pi}{7} &= \frac{z^2+z^{-2}}{2} &&= \frac{z^2+z^5}{2}, \\
\cos{\frac{6\pi}{7}} &= \frac{z^3+z^4}{2} &&= \frac{z^3+z^{-3}}{2}.
+
\cos\frac{6\pi}{7} &= \frac{z^3+z^{-3}}{2} &&= \frac{z^3+z^4}{2}.
 
\end{alignat*}</cmath>
 
\end{alignat*}</cmath>
Recall that <math>\sum_{k=0}^{6}z^k=0</math> (from which <math>\sum_{k=1}^{6}z^k=-1</math>), and let <math>(r,s,t)=\left(\cos{\frac{2\pi}{7}},\cos{\frac{4\pi}{7}},\cos{\frac{6\pi}{7}}\right).</math> By Vieta's Formulas, the answer is
+
By geometric series, we conclude that <cmath>\sum_{k=0}^{6}z^k=\frac{1-1}{1-z}=0.</cmath>
 +
Alternatively, recall that the <math>7</math>th roots of unity satisfy the equation <math>z^7-1=0.</math> By Vieta's Formulas, the sum of these seven roots is <math>0.</math>
 +
 
 +
As a result, we get <cmath>\sum_{k=1}^{6}z^k=-1.</cmath>
 +
Let <math>(r,s,t)=\left(\cos{\frac{2\pi}{7}},\cos{\frac{4\pi}{7}},\cos{\frac{6\pi}{7}}\right).</math> By Vieta's Formulas, the answer is
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
 
abc&=[-(r+s+t)](rs+st+tr)(-rst) \\
 
abc&=[-(r+s+t)](rs+st+tr)(-rst) \\
Line 62: Line 26:
 
~MRENTHUSIASM (inspired by Peeyush Pandaya et al)
 
~MRENTHUSIASM (inspired by Peeyush Pandaya et al)
  
===Remark (Geometric Representations)===
+
==Solution 2 (Complex Numbers: Trigonometric Identities)==
Graph of the <math>7</math>th roots of unity:
+
Let <math>z=e^{\frac{2\pi i}{7}}.</math> In Solution 1, we conclude that <math>\sum_{k=1}^{6}z^k=-1,</math> so <cmath>\sum_{k=1}^{6}\operatorname{Re}\left(z^k\right)=\sum_{k=1}^{6}\cos\frac{2k\pi}{7}=-1.</cmath>
 +
Since <math>\cos\theta=\cos(2\pi-\theta)</math> holds for all <math>\theta,</math> this sum becomes
 +
<cmath>\begin{align*}
 +
2\left(\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}\right)&=-1\\
 +
\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}&=-\frac12.
 +
\end{align*}</cmath>
 +
Note that <math>\theta=\frac{2\pi}{7},\frac{4\pi}{7},\frac{6\pi}{7}</math> are roots of <cmath>\cos\theta+\cos(2\theta)+\cos(3\theta)=-\frac12, \hspace{15mm} (\bigstar)</cmath> as they can be verified either algebraically (by the identity <math>\cos\theta=\cos(-\theta)=\cos(2\pi-\theta)</math>) or geometrically (by the graph below).
 
<asy>
 
<asy>
 
/* Made by MRENTHUSIASM */
 
/* Made by MRENTHUSIASM */
size(220);
+
size(200);  
import TrigMacros;
 
  
int big = 2;
+
int xMin = -2;
 +
int xMax = 2;
 +
int yMin = -2;
 +
int yMax = 2;
 
int numRays = 24;
 
int numRays = 24;
  
Line 78: Line 50:
 
   for (int i = 1; i < big+1; ++i)
 
   for (int i = 1; i < big+1; ++i)
 
   {
 
   {
     draw(Circle((0,0),i), gray+ linewidth(0.4));
+
     draw(Circle((0,0),i), gray+linewidth(0.4));
 
   }
 
   }
 
   for(int i=0;i<numRays;++i)  
 
   for(int i=0;i<numRays;++i)  
   draw(rotate(i*360/numRays)*((-big,0)--(big,0)),gray+ linewidth(0.4));
+
   draw(rotate(i*360/numRays)*((-big,0)--(big,0)), gray+linewidth(0.4));
 
}
 
}
  
polarGrid(big, numRays);
+
//Draws the horizontal gridlines
rr_cartesian_axes(-big,big,-big,big,complexplane=true);
+
void horizontalLines()
 +
{
 +
  for (int i = yMin+1; i < yMax; ++i)
 +
  {
 +
    draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4));
 +
  }
 +
}
 +
 
 +
//Draws the vertical gridlines
 +
void verticalLines()
 +
{
 +
  for (int i = xMin+1; i < xMax; ++i)
 +
  {
 +
    draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4));
 +
  }
 +
}
 +
 
 +
horizontalLines();
 +
verticalLines();
 +
polarGrid(xMax,numRays);
 +
draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5));
 +
draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5));
 +
label("Re",(xMax,0),(2,0));
 +
label("Im",(0,yMax),(0,2));
  
 
//The n such that we're taking the nth roots of unity
 
//The n such that we're taking the nth roots of unity
Line 105: Line 100:
 
for(int i = 0; i< n; ++i) dot(A[i],linewidth(3.5));  
 
for(int i = 0; i< n; ++i) dot(A[i],linewidth(3.5));  
 
</asy>
 
</asy>
Geometrically, it is clear that the imaginary parts of these complex numbers sum to <math>0.</math>  
+
Let <math>x=\cos\theta.</math> It follows that
 +
<cmath>\begin{align*}
 +
\cos(2\theta)&=2\cos^2\theta-1 \\
 +
&=2x^2-1, \\
 +
\cos(3\theta)&=\cos(2\theta+\theta) \\
 +
&=\cos(2\theta)\cos\theta-\sin(2\theta)\sin\theta \\
 +
&=\cos(2\theta)\cos\theta-2\sin^2\theta\cos\theta \\
 +
&=\cos(2\theta)\cos\theta-2\left(1-\cos^2\theta\right)\cos\theta \\
 +
&=\left(2x^2-1\right)x-2\left(1-x^2\right)x \\
 +
&=4x^3-3x.
 +
\end{align*}</cmath>
 +
Rewriting <math>(\bigstar)</math> in terms of <math>x,</math> we have
 +
<cmath>\begin{align*}
 +
x+\left(2x^2-1\right)+\left(4x^3-3x\right)&=-\frac12 \\
 +
4x^3+2x^2-2x-\frac12&=0 \\
 +
x^3+\frac12 x^2 - \frac12 x - \frac18 &= 0,
 +
\end{align*}</cmath>
 +
in which the roots are <math>x=\cos\frac{2\pi}{7},\cos\frac{4\pi}{7},\cos\frac{6\pi}{7}.</math>
  
~MRENTHUSIASM
+
Therefore, we obtain <math>(a,b,c)=\left(\frac12,-\frac12,-\frac18\right),</math> from which <math>abc=\boxed{\textbf{(D) }\frac{1}{32}}.</math>
 +
 
 +
~MRENTHUSIASM (inspired by Peeyush Pandaya et al)
  
 
==Solution 3 (Trigonometric Identities)==
 
==Solution 3 (Trigonometric Identities)==
Line 117: Line 131:
 
Therefore, we get <math>a = -\left(-\frac12\right) = \frac12.</math></li><p>
 
Therefore, we get <math>a = -\left(-\frac12\right) = \frac12.</math></li><p>
 
   <li>Solve for <math>b:</math> By Vieta's Formulas, we have <math>b = \cos \frac{2\pi}7 \cos \frac{4\pi}7 + \cos \frac{2\pi}7 \cos \frac{6\pi}7 + \cos \frac{4\pi}7 \cos \frac{6\pi}7.</math><p>
 
   <li>Solve for <math>b:</math> By Vieta's Formulas, we have <math>b = \cos \frac{2\pi}7 \cos \frac{4\pi}7 + \cos \frac{2\pi}7 \cos \frac{6\pi}7 + \cos \frac{4\pi}7 \cos \frac{6\pi}7.</math><p>
Note that <math>\cos \alpha \cos \beta = \frac{ \cos \left(\alpha + \beta\right) + \cos \left(\alpha - \beta\right) }{2}</math> for all <math>\alpha</math> and <math>\beta.</math> Therefore, we get <cmath>b=\frac{\cos \frac{6\pi}7 + \cos \frac{2\pi}7}2 + \frac{\cos \frac{4\pi}7 + \cos \frac{4\pi}7}2 + \frac{\cos \frac{6\pi}7 + \cos \frac{2\pi}7}2=\cos \frac{2\pi}7 + \cos \frac{4\pi}7 + \cos \frac{6\pi}7=-\frac12.</cmath></li>
+
Note that <math>\cos \alpha \cos \beta = \frac{ \cos \left(\alpha + \beta\right) + \cos \left(\alpha - \beta\right) }{2}</math> for all <math>\alpha</math> and <math>\beta.</math> Therefore, we get <cmath>b=\frac{\cos \frac{6\pi}7 + \cos \frac{2\pi}7}2 + \frac{\cos \frac{6\pi}7 + \cos \frac{4\pi}7}2 + \frac{\cos \frac{4\pi}7 + \cos \frac{2\pi}7}2=\cos \frac{2\pi}7 + \cos \frac{4\pi}7 + \cos \frac{6\pi}7=-\frac12.</cmath></li>
   <li>Solve for <math>c:</math> By Vieta's Formulas, we have <math>c = -\cos \frac{2\pi}7 \cos \frac{4\pi}7 \cos \frac{8\pi}7.</math> <p>
+
   <li>Solve for <math>c:</math> By Vieta's Formulas, we have <math>c = -\cos \frac{2\pi}7 \cos \frac{4\pi}7 \cos \frac{6\pi}7=-\cos \frac{2\pi}7 \cos \frac{4\pi}7 \cos \frac{8\pi}7.</math> <p>
 
We multiply both sides by <math>8 \sin{\frac{2\pi}{7}},</math> then repeatedly apply the angle addition formula for sine:
 
We multiply both sides by <math>8 \sin{\frac{2\pi}{7}},</math> then repeatedly apply the angle addition formula for sine:
 
<cmath>\begin{align*}
 
<cmath>\begin{align*}
Line 132: Line 146:
 
Finally, the answer is <math>abc=\frac12\cdot\left(-\frac12\right)\cdot\left(-\frac18\right)=\boxed{\textbf{(D) }\frac{1}{32}}.</math>
 
Finally, the answer is <math>abc=\frac12\cdot\left(-\frac12\right)\cdot\left(-\frac18\right)=\boxed{\textbf{(D) }\frac{1}{32}}.</math>
  
~Tucker (Solution)
+
~Tucker
 
 
~MRENTHUSIASM (Reformatting)
 
  
 
== Solution 4 (Product-to-Sum Identity) ==
 
== Solution 4 (Product-to-Sum Identity) ==
Note sum of roots of unity equal zero, sum of real parts equal zero, and <math>\operatorname{Re}\left(\omega^{m}\right) = \operatorname{Re}\left(\omega^{-m}\right).</math> We have <cmath>\cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} = \frac12(0 - \cos 0) = -\frac12,</cmath> so <math>a = \frac{1}{2}.</math>
+
Note that the sum of the roots of unity equal zero, so the sum of their real parts equal zero, and <math>\operatorname{Re}\left(\omega^{m}\right) = \operatorname{Re}\left(\omega^{-m}\right).</math> We have <cmath>\cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} = \frac12(0 - \cos 0) = -\frac12,</cmath> so <math>a = \frac{1}{2}.</math>
  
 
By the Product-to-Sum Identity, we have  
 
By the Product-to-Sum Identity, we have  
Line 143: Line 155:
 
\cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7} + \cos \frac{2 \pi}{7} \cos \frac{6 \pi}{7} + \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7} &= \frac{1}{2} \left(2 \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} + \cos \frac{8 \pi}{7} + \cos \frac{10 \pi}{7}\right) \\
 
\cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7} + \cos \frac{2 \pi}{7} \cos \frac{6 \pi}{7} + \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7} &= \frac{1}{2} \left(2 \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} + \cos \frac{8 \pi}{7} + \cos \frac{10 \pi}{7}\right) \\
 
&= \frac{1}{2}\left(2 \cos \frac{2 \pi}{7} + 2 \cos \frac{4 \pi}{7} + 2 \cos \frac{6 \pi}{7}\right) \\
 
&= \frac{1}{2}\left(2 \cos \frac{2 \pi}{7} + 2 \cos \frac{4 \pi}{7} + 2 \cos \frac{6 \pi}{7}\right) \\
 +
&= \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} \\
 
&= -\frac{1}{2},
 
&= -\frac{1}{2},
 
\end{align*}</cmath>
 
\end{align*}</cmath>
Line 158: Line 171:
 
Finally, we get <math>abc=\boxed{\textbf{(D) }\frac{1}{32}}.</math>
 
Finally, we get <math>abc=\boxed{\textbf{(D) }\frac{1}{32}}.</math>
  
~ ccx09 (Solution)
+
~ccx09
  
~MRENTHUSIASM (Reformatting)
+
== Easy Video Solution by Scholars Foundation Without Complex Numbers and Euler's Identity (Using Trigonometry + Vieta's Formula) ==
 +
 +
https://youtu.be/m4N4KN6_tA0
  
== Solution 5 (Approximations) ==
+
== Video Solution by OmegaLearn (Euler's Identity + Vieta's Formula) ==
Letting the roots be <math>p=\cos\frac{2\pi}{7},q=\cos\frac{4\pi}{7},</math> and <math>r=\cos\frac{6\pi}{7}.</math> Vieta gives
+
https://youtu.be/Im_WTIK0tss
<cmath>\begin{align*}
 
p + q + r &= a, \\
 
pq + qr + rp &= -b, \\
 
pqr &= c.
 
\end{align*}</cmath>
 
We use the Taylor series <cmath>\cos x = \sum_{k = 0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}</cmath>
 
to approximate the roots.
 
  
Taking the sum up to <math>k = 3</math> yields a close approximation, so we have
+
~ pi_is_3.14
<cmath>\begin{alignat*}{8}
 
\cos\left(\frac{2\pi}{7}\right) &\approx 1-\frac{\left(\frac{2\pi}{7}\right)^{2}}{2}+\frac{\left(\frac{2\pi}{7}\right)^{4}}{24}-\frac{\left(\frac{2\pi}{7}\right)^{6}}{720} &&\approx 0.623, \\
 
\cos\left(\frac{4\pi}{7}\right) &\approx 1-\frac{\left(\frac{4\pi}{7}\right)^{2}}{2}+\frac{\left(\frac{4\pi}{7}\right)^{4}}{24}-\frac{\left(\frac{4\pi}{7}\right)^{6}}{720} &&\approx -0.225, \\
 
\cos\left(\frac{6\pi}{7}\right) &\approx 1-\frac{\left(\frac{6\pi}{7}\right)^{2}}{2}+\frac{\left(\frac{6\pi}{7}\right)^{4}}{24}-\frac{\left(\frac{6\pi}{7}\right)^{6}}{720} &&\approx -0.964.
 
\end{alignat*}</cmath>
 
Note that these approximations get worse as <math>x</math> gets larger, but they will be fine for the purposes of this problem. We then have
 
<cmath>\begin{alignat*}{8}
 
p + q + r &= a &&\approx -0.56, \\
 
pq + qr + rq &= -b &&\approx -0.524, \\
 
pqr &= c &&\approx 0.135.
 
\end{alignat*}</cmath>
 
We further approximate these values to <math>a \approx -0.5,b \approx 0.5,</math> and <math>c \approx 0.125</math> (mostly as this is an AMC problem and will likely use nice fractions). Thus, we have <math>abc \approx \boxed{\textbf{(D) }\frac{1}{32}}.</math>
 
  
<u><b>Remark</b></u>
+
== Video Solution by MRENTHUSIASM (English & Chinese) ==
 +
https://youtu.be/X6oqEpFAJBk
  
In order to be more confident in your answer, you can go a few terms further in the Taylor series.
+
~MRENTHUSIASM
 
 
~ciceronii (Solution)
 
 
 
~MRENTHUSIASM (Reformatting)
 
 
 
== Video Solution by OmegaLearn (Euler's Identity + Vieta's ) ==
 
https://youtu.be/Im_WTIK0tss
 
 
 
~ pi_is_3.14
 
  
 
==See also==
 
==See also==

Latest revision as of 12:52, 21 November 2024

Problem

Suppose that the roots of the polynomial $P(x)=x^3+ax^2+bx+c$ are $\cos \frac{2\pi}7,\cos \frac{4\pi}7,$ and $\cos \frac{6\pi}7$, where angles are in radians. What is $abc$?

$\textbf{(A) }{-}\frac{3}{49} \qquad \textbf{(B) }{-}\frac{1}{28} \qquad \textbf{(C) }\frac{\sqrt[3]7}{64} \qquad \textbf{(D) }\frac{1}{32}\qquad \textbf{(E) }\frac{1}{28}$

Solution 1 (Complex Numbers: Vieta's Formulas)

Let $z=e^{\frac{2\pi i}{7}}.$ Since $z$ is a $7$th root of unity, we have $z^7=1.$ For all integers $k,$ note that $\cos\frac{2k\pi}{7}=\operatorname{Re}\left(z^k\right)=\operatorname{Re}\left(z^{-k}\right)$ and $\sin\frac{2k\pi}{7}=\operatorname{Im}\left(z^k\right)=-\operatorname{Im}\left(z^{-k}\right).$ It follows that \begin{alignat*}{4} \cos\frac{2\pi}{7} &= \frac{z+z^{-1}}{2} &&= \frac{z+z^6}{2}, \\ \cos\frac{4\pi}{7} &= \frac{z^2+z^{-2}}{2} &&= \frac{z^2+z^5}{2}, \\ \cos\frac{6\pi}{7} &= \frac{z^3+z^{-3}}{2} &&= \frac{z^3+z^4}{2}. \end{alignat*} By geometric series, we conclude that \[\sum_{k=0}^{6}z^k=\frac{1-1}{1-z}=0.\] Alternatively, recall that the $7$th roots of unity satisfy the equation $z^7-1=0.$ By Vieta's Formulas, the sum of these seven roots is $0.$

As a result, we get \[\sum_{k=1}^{6}z^k=-1.\] Let $(r,s,t)=\left(\cos{\frac{2\pi}{7}},\cos{\frac{4\pi}{7}},\cos{\frac{6\pi}{7}}\right).$ By Vieta's Formulas, the answer is \begin{align*} abc&=[-(r+s+t)](rs+st+tr)(-rst) \\ &=(r+s+t)(rs+st+tr)(rst) \\ &=\left(\frac{\sum_{k=1}^{6}z^k}{2}\right)\left(\frac{2\sum_{k=1}^{6}z^k}{4}\right)\left(\frac{1+\sum_{k=0}^{6}z^k}{8}\right) \\ &=\frac{1}{32}\left(\sum_{k=1}^{6}z^k\right)\left(\sum_{k=1}^{6}z^k\right)\left(1+\sum_{k=0}^{6}z^k\right) \\ &=\frac{1}{32}(-1)(-1)(1) \\ &=\boxed{\textbf{(D) }\frac{1}{32}}. \end{align*} ~MRENTHUSIASM (inspired by Peeyush Pandaya et al)

Solution 2 (Complex Numbers: Trigonometric Identities)

Let $z=e^{\frac{2\pi i}{7}}.$ In Solution 1, we conclude that $\sum_{k=1}^{6}z^k=-1,$ so \[\sum_{k=1}^{6}\operatorname{Re}\left(z^k\right)=\sum_{k=1}^{6}\cos\frac{2k\pi}{7}=-1.\] Since $\cos\theta=\cos(2\pi-\theta)$ holds for all $\theta,$ this sum becomes \begin{align*} 2\left(\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}\right)&=-1\\ \cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}&=-\frac12. \end{align*} Note that $\theta=\frac{2\pi}{7},\frac{4\pi}{7},\frac{6\pi}{7}$ are roots of \[\cos\theta+\cos(2\theta)+\cos(3\theta)=-\frac12, \hspace{15mm} (\bigstar)\] as they can be verified either algebraically (by the identity $\cos\theta=\cos(-\theta)=\cos(2\pi-\theta)$) or geometrically (by the graph below). [asy] /* Made by MRENTHUSIASM */ size(200);   int xMin = -2; int xMax = 2; int yMin = -2; int yMax = 2; int numRays = 24;  //Draws a polar grid that goes out to a number of circles  //equal to big, with numRays specifying the number of rays:  void polarGrid(int big, int numRays)  {   for (int i = 1; i < big+1; ++i)   {     draw(Circle((0,0),i), gray+linewidth(0.4));   }   for(int i=0;i<numRays;++i)    draw(rotate(i*360/numRays)*((-big,0)--(big,0)), gray+linewidth(0.4)); }  //Draws the horizontal gridlines void horizontalLines() {   for (int i = yMin+1; i < yMax; ++i)   {     draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4));   } }  //Draws the vertical gridlines void verticalLines() {   for (int i = xMin+1; i < xMax; ++i)   {     draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4));   } }  horizontalLines(); verticalLines(); polarGrid(xMax,numRays); draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); label("Re",(xMax,0),(2,0)); label("Im",(0,yMax),(0,2));  //The n such that we're taking the nth roots of unity int n = 7;  pair A[]; for(int i = 0; i <= n-1; i+=1) {   A[i] = rotate(360*i/n)*(1,0); }  label("$1$",A[0],NE, UnFill); for(int i =1; i < n; ++i) {    label("$e^{\frac{" +string(2i)+"\pi i}{" + string(n) + "}}$",A[i],dir(A[i]), UnFill); }  draw(Circle((0,0),1),red);  for(int i = 0; i< n; ++i) dot(A[i],linewidth(3.5));  [/asy] Let $x=\cos\theta.$ It follows that \begin{align*} \cos(2\theta)&=2\cos^2\theta-1 \\ &=2x^2-1, \\ \cos(3\theta)&=\cos(2\theta+\theta) \\ &=\cos(2\theta)\cos\theta-\sin(2\theta)\sin\theta \\ &=\cos(2\theta)\cos\theta-2\sin^2\theta\cos\theta \\ &=\cos(2\theta)\cos\theta-2\left(1-\cos^2\theta\right)\cos\theta \\ &=\left(2x^2-1\right)x-2\left(1-x^2\right)x \\ &=4x^3-3x. \end{align*} Rewriting $(\bigstar)$ in terms of $x,$ we have \begin{align*} x+\left(2x^2-1\right)+\left(4x^3-3x\right)&=-\frac12 \\ 4x^3+2x^2-2x-\frac12&=0 \\ x^3+\frac12 x^2 - \frac12 x - \frac18 &= 0, \end{align*} in which the roots are $x=\cos\frac{2\pi}{7},\cos\frac{4\pi}{7},\cos\frac{6\pi}{7}.$

Therefore, we obtain $(a,b,c)=\left(\frac12,-\frac12,-\frac18\right),$ from which $abc=\boxed{\textbf{(D) }\frac{1}{32}}.$

~MRENTHUSIASM (inspired by Peeyush Pandaya et al)

Solution 3 (Trigonometric Identities)

We solve for $a,b,$ and $c$ separately:

  1. Solve for $a:$ By Vieta's Formulas, we have $a = - \left( \cos \frac{2\pi}7 + \cos \frac{4\pi}7 + \cos \frac{6\pi}7 \right).$

    The real parts of the $7$th roots of unity are $1, \cos \frac{2\pi}7, \cos \frac{4\pi}7, \cos \frac{6\pi}7, \cos \frac{8\pi}7, \cos \frac{10\pi}7, \cos \frac{12\pi}7$ and they sum to $0.$

    Note that $\cos\theta=\cos(2\pi-\theta)$ for all $\theta.$ Excluding $1,$ the other six roots add to \[2\left(\cos \frac{2\pi}7 + \cos \frac{4\pi}7 + \cos \frac{6\pi}7\right) = -1,\] from which \[\cos \frac{2\pi}7 + \cos \frac{4\pi}7 + \cos \frac{6\pi}7 = -\frac12.\] Therefore, we get $a = -\left(-\frac12\right) = \frac12.$

  2. Solve for $b:$ By Vieta's Formulas, we have $b = \cos \frac{2\pi}7 \cos \frac{4\pi}7 + \cos \frac{2\pi}7 \cos \frac{6\pi}7 + \cos \frac{4\pi}7 \cos \frac{6\pi}7.$

    Note that $\cos \alpha \cos \beta = \frac{ \cos \left(\alpha + \beta\right) + \cos \left(\alpha - \beta\right) }{2}$ for all $\alpha$ and $\beta.$ Therefore, we get \[b=\frac{\cos \frac{6\pi}7 + \cos \frac{2\pi}7}2 + \frac{\cos \frac{6\pi}7 + \cos \frac{4\pi}7}2 + \frac{\cos \frac{4\pi}7 + \cos \frac{2\pi}7}2=\cos \frac{2\pi}7 + \cos \frac{4\pi}7 + \cos \frac{6\pi}7=-\frac12.\]

  3. Solve for $c:$ By Vieta's Formulas, we have $c = -\cos \frac{2\pi}7 \cos \frac{4\pi}7 \cos \frac{6\pi}7=-\cos \frac{2\pi}7 \cos \frac{4\pi}7 \cos \frac{8\pi}7.$

    We multiply both sides by $8 \sin{\frac{2\pi}{7}},$ then repeatedly apply the angle addition formula for sine: \begin{align*} c \cdot 8 \sin{\frac{2\pi}{7}} &= -8 \sin{\frac{2\pi}{7}} \cos \frac{2\pi}7 \cos \frac{4\pi}7 \cos \frac{8\pi}7 \\ &= -4 \sin \frac{4\pi}7 \cos \frac{4\pi}7 \cos \frac{8\pi}7 \\ &= -2 \sin \frac{8\pi}7 \cos \frac{8\pi}7 \\ &= -\sin \frac{16\pi}7 \\ &= -\sin \frac{2\pi}7. \end{align*} Therefore, we get $c = -\frac18.$

Finally, the answer is $abc=\frac12\cdot\left(-\frac12\right)\cdot\left(-\frac18\right)=\boxed{\textbf{(D) }\frac{1}{32}}.$

~Tucker

Solution 4 (Product-to-Sum Identity)

Note that the sum of the roots of unity equal zero, so the sum of their real parts equal zero, and $\operatorname{Re}\left(\omega^{m}\right) = \operatorname{Re}\left(\omega^{-m}\right).$ We have \[\cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} = \frac12(0 - \cos 0) = -\frac12,\] so $a = \frac{1}{2}.$

By the Product-to-Sum Identity, we have \begin{align*} \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7} + \cos \frac{2 \pi}{7} \cos \frac{6 \pi}{7} + \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7} &= \frac{1}{2} \left(2 \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} + \cos \frac{8 \pi}{7} + \cos \frac{10 \pi}{7}\right) \\ &= \frac{1}{2}\left(2 \cos \frac{2 \pi}{7} + 2 \cos \frac{4 \pi}{7} + 2 \cos \frac{6 \pi}{7}\right) \\ &= \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} \\ &= -\frac{1}{2}, \end{align*} so $b = -\frac{1}{2}.$

By the Product-to-Sum Identity, we have \begin{align*} \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7} &= \frac{1}{2}\cos \frac{6 \pi}{7}\left(\cos \frac{2 \pi}{7} + \cos \frac{6 \pi}{7}\right) \\ &= \frac{1}{4}\left(\cos \frac{4 \pi}{7} +  \cos \frac{8 \pi}{7}\right) + \frac{1}{4}\left(1 + \cos \frac{12 \pi}{7}\right) \\ &= \frac{1}{4}\left(1 + \cos\frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}\right) \\ &= \frac{1}{8}, \end{align*} so $c = -\frac{1}{8}.$

Finally, we get $abc=\boxed{\textbf{(D) }\frac{1}{32}}.$

~ccx09

Easy Video Solution by Scholars Foundation Without Complex Numbers and Euler's Identity (Using Trigonometry + Vieta's Formula)

https://youtu.be/m4N4KN6_tA0

Video Solution by OmegaLearn (Euler's Identity + Vieta's Formula)

https://youtu.be/Im_WTIK0tss

~ pi_is_3.14

Video Solution by MRENTHUSIASM (English & Chinese)

https://youtu.be/X6oqEpFAJBk

~MRENTHUSIASM

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png