Difference between revisions of "2017 AMC 10B Problems"
Ishankhare (talk | contribs) |
Ishankhare (talk | contribs) |
||
Line 13: | Line 13: | ||
[[2017 AMC 10B Problems/Problem 2|Solution]] | [[2017 AMC 10B Problems/Problem 2|Solution]] | ||
+ | |||
+ | ==Problem 24== | ||
+ | The vertices of an equilateral triangle lie on the hyperbola <math>xy=1</math>, and a vertex of this hyperbola is the centroid of the triangle. What is the square of the area of the triangle? | ||
+ | |||
+ | <math>\textbf{(A)}\ 48\qquad\textbf{(B)}\ 60\qquad\textbf{(C)}\ 108\qquad\textbf{(D)}\ 120\qquad\textbf{(E)}\ 169</math> | ||
+ | |||
+ | [[2017 AMC 10B Problems/Problem 24|Solution]] | ||
==Problem 25== | ==Problem 25== |
Revision as of 09:32, 16 February 2017
2017 AMC 10B (Answer Key) Printable versions: • AoPS Resources • PDF | ||
Instructions
| ||
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 |
Contents
Problem 1
Mary thought of a positive two-digit number. She multiplied it by and added . Then she switched the digits of the result, obtaining a number between and , inclusive. What was Mary's number?
Problem 2
Sofia ran laps around the -meter track at her school. For each lap, she ran the first meters at an average speed of meters per second and the remaining meters at an average speed of meters per second. How much time did Sofia take running the laps?
minutes and seconds minutes and seconds minutes and seconds minutes and seconds minutes and seconds
Problem 24
The vertices of an equilateral triangle lie on the hyperbola , and a vertex of this hyperbola is the centroid of the triangle. What is the square of the area of the triangle?
Problem 25
Last year Isabella took math tests and received different scores, each an integer between and , inclusive. After each test she noticed that the average of her test scores was an integer. Her score on the seventh test was . What was her score on the sixth test?