Difference between revisions of "2017 AMC 10B Problems/Problem 19"
Ishankhare (talk | contribs) (Created page with "==Problem== Placeholder ==Solution== Placeholder ==See Also== {{AMC10 box|year=2017|ab=B|num-b=18|num-a=20}} {{MAA Notice}}") |
The turtle (talk | contribs) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | + | Let <math>ABC</math> be an equilateral triangle. Extend side <math>\overline{AB}</math> beyond <math>B</math> to a point <math>B'</math> so that <math>BB'=3AB</math>. Similarly, extend side <math>\overline{BC}</math> beyond <math>C</math> to a point <math>C'</math> so that <math>CC'=3BC</math>, and extend side <math>\overline{CA}</math> beyond <math>A</math> to a point <math>A'</math> so that <math>AA'=3CA</math>. What is the ratio of the area of <math>\triangle A'B'C'</math> to the area of <math>\triangle ABC</math>? | |
+ | <math>\textbf{(A)}\ 9:1\qquad\textbf{(B)}\ 16:1\qquad\textbf{(C)}\ 25:1\qquad\textbf{(D)}\ 36:1\qquad\textbf{(E)}\ 37:1</math> | ||
==Solution== | ==Solution== | ||
Placeholder | Placeholder |
Revision as of 12:21, 16 February 2017
Problem
Let be an equilateral triangle. Extend side beyond to a point so that . Similarly, extend side beyond to a point so that , and extend side beyond to a point so that . What is the ratio of the area of to the area of ?
Solution
Placeholder
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.