Difference between revisions of "2021 AMC 12A Problems/Problem 1"

m
 
(One intermediate revision by one other user not shown)
Line 4: Line 4:
 
==Solution==
 
==Solution==
 
We evaluate the given expression to get that <cmath>2^{1+2+3}-(2^1+2^2+2^3)=2^6-(2^1+2^2+2^3)=64-2-4-8=50 \implies \boxed{\text{(B)}}</cmath>
 
We evaluate the given expression to get that <cmath>2^{1+2+3}-(2^1+2^2+2^3)=2^6-(2^1+2^2+2^3)=64-2-4-8=50 \implies \boxed{\text{(B)}}</cmath>
 +
 +
==Video Solution (Quick and Easy)==
 +
https://youtu.be/zxf-CZ97gY0
 +
 +
~Education, the Study of Everything
  
 
==Video Solution by Aaron He==
 
==Video Solution by Aaron He==
 
https://www.youtube.com/watch?v=xTGDKBthWsw&t=8
 
https://www.youtube.com/watch?v=xTGDKBthWsw&t=8
 +
 
==Video Solution by Punxsutawney Phil==
 
==Video Solution by Punxsutawney Phil==
 
https://www.youtube.com/watch?v=MUHja8TpKGw
 
https://www.youtube.com/watch?v=MUHja8TpKGw
Line 24: Line 30:
  
 
==See also==
 
==See also==
{{AMC12 box|year=2021|ab=A|before=First problem|num-a=2}}
+
{{AMC12 box|year=2021|ab=A|before=First Problem|num-a=2}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 22:28, 22 October 2022

Problem

What is the value of\[2^{1+2+3}-(2^1+2^2+2^3)?\]$\textbf{(A) }0 \qquad \textbf{(B) }50 \qquad \textbf{(C) }52 \qquad \textbf{(D) }54 \qquad \textbf{(E) }57$

Solution

We evaluate the given expression to get that \[2^{1+2+3}-(2^1+2^2+2^3)=2^6-(2^1+2^2+2^3)=64-2-4-8=50 \implies \boxed{\text{(B)}}\]

Video Solution (Quick and Easy)

https://youtu.be/zxf-CZ97gY0

~Education, the Study of Everything

Video Solution by Aaron He

https://www.youtube.com/watch?v=xTGDKBthWsw&t=8

Video Solution by Punxsutawney Phil

https://www.youtube.com/watch?v=MUHja8TpKGw

Video Solution by Hawk Math

https://www.youtube.com/watch?v=P5al76DxyHY

Video Solution by OmegaLearn (Using computation)

https://youtu.be/90OIMAWAwNg

~ pi_is_3.14

Video Solution by TheBeautyofMath

https://youtu.be/rEWS75W0Q54

~IceMatrix

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png