Difference between revisions of "2007 Cyprus MO/Lyceum/Problem 3"

m
m (Minor typo)
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
A cyclist drives form town A to town B with velocity <math>40 \frac{\mathrm{km}}{\mathrm{h}}</math> and comes back with velocity <math>60 \frac{\mathrm{km}}{\mathrm{h}}</math>. The [[mean]] velocity in <math>\frac{\mathrm{km}}{\mathrm{h}}</math> for the total distance is
+
A cyclist drives from town A to town B with velocity <math>40 \frac{\mathrm{km}}{\mathrm{h}}</math> and comes back with velocity <math>60 \frac{\mathrm{km}}{\mathrm{h}}</math>. The [[mean]] velocity in <math>\frac{\mathrm{km}}{\mathrm{h}}</math> for the total distance is
  
 
<math> \mathrm{(A) \ } 45\qquad \mathrm{(B) \ } 48\qquad \mathrm{(C) \ } 50\qquad \mathrm{(D) \ } 55\qquad \mathrm{(E) \ } 100</math>
 
<math> \mathrm{(A) \ } 45\qquad \mathrm{(B) \ } 48\qquad \mathrm{(C) \ } 50\qquad \mathrm{(D) \ } 55\qquad \mathrm{(E) \ } 100</math>

Latest revision as of 15:01, 24 May 2009

Problem

A cyclist drives from town A to town B with velocity $40 \frac{\mathrm{km}}{\mathrm{h}}$ and comes back with velocity $60 \frac{\mathrm{km}}{\mathrm{h}}$. The mean velocity in $\frac{\mathrm{km}}{\mathrm{h}}$ for the total distance is

$\mathrm{(A) \ } 45\qquad \mathrm{(B) \ } 48\qquad \mathrm{(C) \ } 50\qquad \mathrm{(D) \ } 55\qquad \mathrm{(E) \ } 100$

Solution

Let the distance from town A to town B, in kilometers, be $d$.

The time it took the cyclist to travel from $A$ to $B$ was $\frac{d}{40}$ hours.

The time it took the cyclist to travel from $B$ to $A$ was $\frac{d}{60}$ hours.

The cyclist's mean velocity was $\frac{2d}{\frac{d}{40}+\frac{d}{60}}=\frac{2d}{\frac{100d}{2400}}= \frac{4800d}{100d}=48\frac{\mathrm{km}}{\mathrm{h}} \Longrightarrow\mathrm{ B}$

See also

2007 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30