Difference between revisions of "2017 AMC 10B Problems/Problem 4"

(Solution 1)
(removed solution 4, same as solution 2.)
 
(One intermediate revision by one other user not shown)
(No difference)

Latest revision as of 21:34, 24 August 2024

Problem

Supposed that $x$ and $y$ are nonzero real numbers such that $\frac{3x+y}{x-3y}=-2$. What is the value of $\frac{x+3y}{3x-y}$?

$\textbf{(A)}\ -3\qquad\textbf{(B)}\ -1\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ 3$

Solution 1

Rearranging, we find $3x+y=-2x+6y$, or $5x=5y\implies x=y$. Substituting, we can convert the second equation into $\frac{x+3x}{3x-x}=\frac{4x}{2x}=\boxed{\textbf{(D)}\ 2}$.


More step-by-step explanation:

$\frac{3x+y}{x-3y}=-2$

$3x+y=-2\left(x-3y\right)$

$3x+y=-2x+6y$

$5x=5y$

$x=y$

$\frac{x+3y}{3x-y}=\frac{1+3\left(1\right)}{3\left(1\right)-1}=\frac{4}{2}=2$.

We choose $\boxed{\textbf{(D)}\ 2}$.

Solution 2

Substituting each $x$ and $y$ with $1$, we see that the given equation holds true, as $\frac{3(1)+1}{1-3(1)} = -2$. Thus, $\frac{x+3y}{3x-y}=\boxed{\textbf{(D)}\ 2}$

Solution 3

Let $y=ax$. The first equation converts into $\frac{(3+a)x}{(1-3a)x}=-2$, which simplifies to $3+a=-2(1-3a)$. After a bit of algebra we found out $a=1$, which means that $x=y$. Substituting $y=x$ into the second equation it becomes $\frac{4x}{2x}=\boxed{\textbf{(D)}\ 2}$ - mathleticguyyy

Video Solution

https://youtu.be/ba6w1OhXqOQ?t=1059

~ pi_is_3.14

Video Solution

https://youtu.be/B0NUA9011OQ

~savannahsolver

Video Solution by TheBeautyofMath

https://youtu.be/zTGuz6EoBWY?t=668

~IceMatrix

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2017 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png