Difference between revisions of "1994 AHSME Problems/Problem 29"

(Solution 2)
 
(One intermediate revision by the same user not shown)
Line 37: Line 37:
 
Let the center of this circle be <math>O</math>, <math>\angle BOC = \theta</math>, the radius of <math>\odot O</math> be <math>r</math>.
 
Let the center of this circle be <math>O</math>, <math>\angle BOC = \theta</math>, the radius of <math>\odot O</math> be <math>r</math>.
  
Because the length of minor arc <math>BC</math> is <math>r</math>, <math>\frac{\theta}{2 \pi} \cdot 2 \pi r = r</math>, <math>\theta = 1</math>
+
By the definition of radian, <math>\theta = </math>
 +
<math>\overarc{BC}</math>
 +
<math>/r=1</math>
 +
 
  
 
<math>\angle BAC=\frac{\angle BOC}{2} = \frac12</math>
 
<math>\angle BAC=\frac{\angle BOC}{2} = \frac12</math>
Line 43: Line 46:
 
<math>\sin \angle BAD = \frac{BD}{AB}</math>, <math>\sin \frac{\angle BAC}{2} = \frac{\frac{BC}{2}}{AB}</math>
 
<math>\sin \angle BAD = \frac{BD}{AB}</math>, <math>\sin \frac{\angle BAC}{2} = \frac{\frac{BC}{2}}{AB}</math>
  
<math>\frac{BC}{AB}=2 \sin \frac{\frac12}{2} = \sin \frac14</math>
+
<math>\frac{BC}{AB}=2 \sin \frac{\frac12}{2} = 2\sin \frac14</math>
  
<math>\frac{AB}{BC}= \boxed{\textbf{(A) } \frac{1}{2} \csc \frac{1}{4} }</math>
+
<math>\frac{AB}{BC}= \frac{1}{2\sin \frac14} = \boxed{\textbf{(A) } \frac{1}{2} \csc \frac{1}{4} }</math>
  
 
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]
 
~[https://artofproblemsolving.com/wiki/index.php/User:Isabelchen isabelchen]

Latest revision as of 08:19, 28 September 2023

Problem

Points $A, B$ and $C$ on a circle of radius $r$ are situated so that $AB=AC, AB>r$, and the length of minor arc $BC$ is $r$. If angles are measured in radians, then $AB/BC=$ [asy] draw(Circle((0,0), 13)); draw((-13,0)--(12,5)--(12,-5)--cycle); dot((-13,0)); dot((12,5)); dot((12,-5)); label("A", (-13,0), W); label("B", (12,5), NE); label("C", (12,-5), SE); [/asy] $\textbf{(A)}\ \frac{1}{2}\csc{\frac{1}{4}} \qquad\textbf{(B)}\ 2\cos{\frac{1}{2}} \qquad\textbf{(C)}\ 4\sin{\frac{1}{2}} \qquad\textbf{(D)}\ \csc{\frac{1}{2}} \qquad\textbf{(E)}\ 2\sec{\frac{1}{2}}$

Solution 1

First note that arc length equals $r\theta$, where $\theta$ is the central angle in radians. Call the center of the circle $O$. Then $\angle{BOC} = 1$ radian because the minor arc $BC$ has length $r$. Since $ABC$ is isosceles, $\angle{AOB} = \pi - \tfrac{1}{2}$. We use the Law of Cosines to find that \[\frac{AB}{BC} = \frac{\sqrt{2r^2 - 2r^2\cos{(\pi - \frac{1}{2})}}}{\sqrt{2r^2 - 2r^2\cos1}} = \frac{\sqrt{1 + \cos{(\frac{1}{2})}}}{\sqrt{1 - \cos1}}.\] Using half-angle formulas, we have that this ratio simplifies to \[\frac{\cos\frac{1}{4}}{\sin{\frac{1}{2}}} = \frac{\cos\frac{1}{4}}{\sqrt{1 - \cos^2{\frac{1}{2}}}} = \frac{\cos\frac{1}{4}}{\sqrt{(1 + \cos{\frac{1}{2}})(1 - \cos{\frac{1}{2}})}} = \frac{\cos{\frac{1}{4}}}{2\cos{\frac{1}{4}}\sin{\frac{1}{4}}}\] \[= \boxed{\frac{1}{2}\csc{\frac{1}{4}}.}\]

Solution 2

[asy] draw(Circle((0,0), 13)); draw((-13,0)--(12,5)--(12,-5)--cycle); dot((-13,0)); dot((12,5)); dot((12,-5)); dot((12,0)); dot((0,0)); draw((-13,0)--(12,0)--cycle); label("A", (-13,0), W); label("B", (12,5), NE); label("C", (12,-5), SE); label("D", (12,0), NW); label("O", (0,0), NE); [/asy]

Let the center of this circle be $O$, $\angle BOC = \theta$, the radius of $\odot O$ be $r$.

By the definition of radian, $\theta =$ $\overarc{BC}$ $/r=1$


$\angle BAC=\frac{\angle BOC}{2} = \frac12$

$\sin \angle BAD = \frac{BD}{AB}$, $\sin \frac{\angle BAC}{2} = \frac{\frac{BC}{2}}{AB}$

$\frac{BC}{AB}=2 \sin \frac{\frac12}{2} = 2\sin \frac14$

$\frac{AB}{BC}= \frac{1}{2\sin \frac14} = \boxed{\textbf{(A) } \frac{1}{2} \csc \frac{1}{4} }$

~isabelchen

See Also

1994 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 28
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png