Difference between revisions of "2002 AMC 12A Problems/Problem 8"

(New page: {{duplicate|2002 AMC 12A #8 and 2002 AMC 10A #8}} ==Problem== Betsy designed a flag using blue triangles, small white squares, and a r...)
 
 
(11 intermediate revisions by 6 users not shown)
Line 3: Line 3:
  
 
==Problem==
 
==Problem==
Betsy designed a flag using blue triangles, small white squares, and a red center square, as shown. Let <math>B</math> be the total area of the blue triangles, <math>W</math> the total area of the white squares, and <math>R</math> the area of the red square. Which of the following is correct?
+
Betsy designed a flag using blue triangles, small white squares, and a red center square, as shown. Let <math>B</math> be the total area of the blue triangles, <math>W</math> the total area of the white squares, and <math>P</math> the area of the red square. Which of the following is correct?
  
 
<asy>
 
<asy>
Line 17: Line 17:
 
</asy>
 
</asy>
 
   
 
   
<math>\text{(A)}\ B = W \qquad \text{(B)}\ W = R \qquad \text{(C)}\ B = R \qquad \text{(D)}\ 3B = 2R \qquad \text{(E)}\ 2R = W</math>
+
<math>\textbf{(A)}\ B = W \qquad \textbf{(B)}\ W = P \qquad \textbf{(C)}\ B = P \qquad \textbf{(D)}\ 3B = 2P \qquad \textbf{(E)}\ 2P = W</math>
  
 
==Solution==
 
==Solution==
The blue that's touching the center red square makes up 8 triangles, or 4 squares. Each of the corners is 2 squares and each of the edges is 1, totaling 12 squares. There are 12 white squares, thus we have <math>\boxed{B=W\Rightarrow \text{(A)}}</math>.
+
The blue that's touching the center red square makes up 8 triangles, or 4 squares. Each of the corners is 1 square and each of the edges is 1, totaling 12 squares. There are 12 white squares, thus we have <math>\boxed{B=W\Rightarrow \text{(A)}}</math>.
 +
 
 +
==Solution 2==
 +
Cut the pattern into 16 square regions and use symmetry.
 +
<asy>
 +
unitsize(3mm);
 +
fill((-4,-4)--(-4,4)--(4,4)--(4,-4)--cycle,blue);
 +
fill((-2,-2)--(-2,2)--(2,2)--(2,-2)--cycle,red);
 +
path onewhite=(-3,3)--(-2,4)--(-1,3)--(-2,2)--(-3,3)--(-1,3)--(0,4)--(1,3)--(0,2)--(-1,3)--(1,3)--(2,4)--(3,3)--(2,2)--(1,3)--cycle;
 +
path divider=(-2,2)--(-3,3)--cycle;
 +
fill(onewhite,white);
 +
fill(rotate(90)*onewhite,white);
 +
fill(rotate(180)*onewhite,white);
 +
fill(rotate(270)*onewhite,white);
 +
draw((-4,-2)--(4,-2),black);
 +
draw((-4,0)--(4,0),black);
 +
draw((-4,2)--(4,2),black);
 +
draw((-2,-4)--(-2,4),black);
 +
draw((0,-4)--(0,4),black);
 +
draw((2,-4)--(2,4),black);
 +
</asy>
 +
 
 +
This clearly shows <math>\boxed{\textbf{(A) }B=W}</math>.
 +
 
 +
==Video Solution by Daily Dose of Math==
 +
 
 +
https://youtu.be/25qXgtEKULA
 +
 
 +
~Thesmartgreekmathdude
  
 
==See Also==
 
==See Also==
Line 27: Line 55:
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]
 +
{{MAA Notice}}

Latest revision as of 23:52, 25 July 2024

The following problem is from both the 2002 AMC 12A #8 and 2002 AMC 10A #8, so both problems redirect to this page.


Problem

Betsy designed a flag using blue triangles, small white squares, and a red center square, as shown. Let $B$ be the total area of the blue triangles, $W$ the total area of the white squares, and $P$ the area of the red square. Which of the following is correct?

[asy] unitsize(3mm); fill((-4,-4)--(-4,4)--(4,4)--(4,-4)--cycle,blue); fill((-2,-2)--(-2,2)--(2,2)--(2,-2)--cycle,red); path onewhite=(-3,3)--(-2,4)--(-1,3)--(-2,2)--(-3,3)--(-1,3)--(0,4)--(1,3)--(0,2)--(-1,3)--(1,3)--(2,4)--(3,3)--(2,2)--(1,3)--cycle; path divider=(-2,2)--(-3,3)--cycle; fill(onewhite,white); fill(rotate(90)*onewhite,white); fill(rotate(180)*onewhite,white); fill(rotate(270)*onewhite,white); [/asy]

$\textbf{(A)}\ B = W \qquad \textbf{(B)}\ W = P \qquad \textbf{(C)}\ B = P \qquad \textbf{(D)}\ 3B = 2P \qquad \textbf{(E)}\ 2P = W$

Solution

The blue that's touching the center red square makes up 8 triangles, or 4 squares. Each of the corners is 1 square and each of the edges is 1, totaling 12 squares. There are 12 white squares, thus we have $\boxed{B=W\Rightarrow \text{(A)}}$.

Solution 2

Cut the pattern into 16 square regions and use symmetry. [asy] unitsize(3mm); fill((-4,-4)--(-4,4)--(4,4)--(4,-4)--cycle,blue); fill((-2,-2)--(-2,2)--(2,2)--(2,-2)--cycle,red); path onewhite=(-3,3)--(-2,4)--(-1,3)--(-2,2)--(-3,3)--(-1,3)--(0,4)--(1,3)--(0,2)--(-1,3)--(1,3)--(2,4)--(3,3)--(2,2)--(1,3)--cycle; path divider=(-2,2)--(-3,3)--cycle; fill(onewhite,white); fill(rotate(90)*onewhite,white); fill(rotate(180)*onewhite,white); fill(rotate(270)*onewhite,white); draw((-4,-2)--(4,-2),black); draw((-4,0)--(4,0),black); draw((-4,2)--(4,2),black); draw((-2,-4)--(-2,4),black); draw((0,-4)--(0,4),black); draw((2,-4)--(2,4),black); [/asy]

This clearly shows $\boxed{\textbf{(A) }B=W}$.

Video Solution by Daily Dose of Math

https://youtu.be/25qXgtEKULA

~Thesmartgreekmathdude

See Also

2002 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2002 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png