Difference between revisions of "2002 AMC 12A Problems/Problem 6"
(→Solution 2) |
|||
(13 intermediate revisions by 6 users not shown) | |||
Line 4: | Line 4: | ||
For how many positive integers <math>m</math> does there exist at least one positive integer n such that <math>m \cdot n \le m + n</math>? | For how many positive integers <math>m</math> does there exist at least one positive integer n such that <math>m \cdot n \le m + n</math>? | ||
− | <math> \ | + | <math> \textbf{(A) } 4\qquad \textbf{(B) } 6\qquad \textbf{(C) } 9\qquad \textbf{(D) } 12\qquad \textbf{(E) } \text{infinitely many} </math> |
− | + | ==Solution 1 == | |
− | ==Solution 1== | ||
For any <math>m</math> we can pick <math>n=1</math>, we get <math>m \cdot 1 \le m + 1</math>, | For any <math>m</math> we can pick <math>n=1</math>, we get <math>m \cdot 1 \le m + 1</math>, | ||
− | therefore the answer is <math>\boxed{\ | + | therefore the answer is <math>\boxed{\textbf{(E) } \text{infinitely many}}</math>. |
− | |||
− | ==Solution 2== | + | ==Solution 2 == |
− | Another solution, slightly similar to this first one would be using Simon's Favorite Factoring Trick. | + | Another solution, slightly similar to this first one would be using [[Simon's Favorite Factoring Trick]]. |
<math>(m-1)(n-1) \leq 1</math> | <math>(m-1)(n-1) \leq 1</math> | ||
Line 23: | Line 21: | ||
<math>0 \leq 1</math> | <math>0 \leq 1</math> | ||
− | This means that there are infinitely many numbers <math>m</math> that can satisfy the inequality. So the answer is <math>\boxed{\text{(E) infinitely many}}</math>. | + | This means that there are infinitely many numbers <math>m</math> that can satisfy the inequality. So the answer is <math>\boxed{\textbf{(E) } \text{infinitely many}}</math>. |
+ | |||
+ | ==Solution 3 == | ||
+ | |||
+ | If we subtract <math>n</math> from both sides of the equation, we get <math>m \cdot n - n \le m</math>. Factor the left side to get <math>(m - 1)(n) \le m</math>. Divide both sides by <math>(m-1)</math> and we get <math> n \le \frac {m}{m-1}</math>. The fraction <math>\frac {m}{m-1} > 1</math> if <math>m > 1</math>. There is an infinite amount of integers greater than <math>1</math>, therefore the answer is <math>\boxed{\textbf{(E) } \text{infinitely many}}</math>. | ||
+ | |||
+ | ==Video Solution by Daily Dose of Math== | ||
+ | |||
+ | https://youtu.be/fo4oSDca-6c | ||
+ | |||
+ | ~Thesmartgreekmathdude | ||
==See Also== | ==See Also== | ||
Line 31: | Line 39: | ||
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] | ||
+ | {{MAA Notice}} |
Latest revision as of 23:44, 18 July 2024
- The following problem is from both the 2002 AMC 12A #6 and 2002 AMC 10A #4, so both problems redirect to this page.
Contents
Problem
For how many positive integers does there exist at least one positive integer n such that ?
Solution 1
For any we can pick , we get , therefore the answer is .
Solution 2
Another solution, slightly similar to this first one would be using Simon's Favorite Factoring Trick.
Let , then
This means that there are infinitely many numbers that can satisfy the inequality. So the answer is .
Solution 3
If we subtract from both sides of the equation, we get . Factor the left side to get . Divide both sides by and we get . The fraction if . There is an infinite amount of integers greater than , therefore the answer is .
Video Solution by Daily Dose of Math
~Thesmartgreekmathdude
See Also
2002 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 5 |
Followed by Problem 7 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2002 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.