Difference between revisions of "1994 AHSME Problems/Problem 18"

(Created page with "==Problem== Triangle <math>ABC</math> is inscribed in a circle, and <math>\angle B = \angle C = 4\angle A</math>. If <math>B</math> and <math>C</math> are adjacent vertices of a ...")
 
m (Solution)
 
(One intermediate revision by one other user not shown)
Line 13: Line 13:
 
<math> \textbf{(A)}\ 5 \qquad\textbf{(B)}\ 7 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 15 \qquad\textbf{(E)}\ 18 </math>
 
<math> \textbf{(A)}\ 5 \qquad\textbf{(B)}\ 7 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 15 \qquad\textbf{(E)}\ 18 </math>
 
==Solution==
 
==Solution==
 +
We solve for <math>\angle A</math> as follows: <cmath>4\angle A+4\angle A+\angle A=180\implies 9\angle A=180\implies \angle A=20.</cmath> That means that minor arc <math>\widehat{BC}</math> has measure <math>40^\circ</math>. We can fit a maximum of <math>\frac{360}{40}=\boxed{\textbf{(C) }9}</math> of these arcs in the circle.
 +
 +
--Solution by [http://www.artofproblemsolving.com/Forum/memberlist.php?mode=viewprofile&u=200685 TheMaskedMagician]
 +
 +
==See Also==
 +
 +
{{AHSME box|year=1994|num-b=17|num-a=19}}
 +
{{MAA Notice}}

Latest revision as of 02:08, 28 May 2021

Problem

Triangle $ABC$ is inscribed in a circle, and $\angle B = \angle C = 4\angle A$. If $B$ and $C$ are adjacent vertices of a regular polygon of $n$ sides inscribed in this circle, then $n=$ [asy] draw(Circle((0,0), 5)); draw((0,5)--(3,-4)--(-3,-4)--cycle); label("A", (0,5), N); label("B", (-3,-4), SW); label("C", (3,-4), SE); dot((0,5)); dot((3,-4)); dot((-3,-4)); [/asy] $\textbf{(A)}\ 5 \qquad\textbf{(B)}\ 7 \qquad\textbf{(C)}\ 9 \qquad\textbf{(D)}\ 15 \qquad\textbf{(E)}\ 18$

Solution

We solve for $\angle A$ as follows: \[4\angle A+4\angle A+\angle A=180\implies 9\angle A=180\implies \angle A=20.\] That means that minor arc $\widehat{BC}$ has measure $40^\circ$. We can fit a maximum of $\frac{360}{40}=\boxed{\textbf{(C) }9}$ of these arcs in the circle.

--Solution by TheMaskedMagician

See Also

1994 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png