Difference between revisions of "1994 AHSME Problems/Problem 13"
(→Solution) |
Tecilis459 (talk | contribs) (Add problem text) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 14: | Line 14: | ||
</asy> | </asy> | ||
<math> \textbf{(A)}\ 30^{\circ} \qquad\textbf{(B)}\ 36^{\circ} \qquad\textbf{(C)}\ 48^{\circ} \qquad\textbf{(D)}\ 60^{\circ} \qquad\textbf{(E)}\ 72^{\circ} </math> | <math> \textbf{(A)}\ 30^{\circ} \qquad\textbf{(B)}\ 36^{\circ} \qquad\textbf{(C)}\ 48^{\circ} \qquad\textbf{(D)}\ 60^{\circ} \qquad\textbf{(E)}\ 72^{\circ} </math> | ||
+ | |||
==Solution== | ==Solution== | ||
<asy> | <asy> | ||
Line 32: | Line 33: | ||
So <math>2x=\frac{180-x}{2}\implies 5x=180\implies x=\angle A=\boxed{\textbf{(B) }36^\circ.}</math> | So <math>2x=\frac{180-x}{2}\implies 5x=180\implies x=\angle A=\boxed{\textbf{(B) }36^\circ.}</math> | ||
+ | |||
--Solution by [http://www.artofproblemsolving.com/Forum/memberlist.php?mode=viewprofile&u=200685 TheMaskedMagician] | --Solution by [http://www.artofproblemsolving.com/Forum/memberlist.php?mode=viewprofile&u=200685 TheMaskedMagician] | ||
+ | |||
+ | ==See Also== | ||
+ | |||
+ | {{AHSME box|year=1994|num-b=12|num-a=14}} | ||
+ | {{MAA Notice}} |
Latest revision as of 12:24, 16 July 2024
Problem
In triangle , . If there is a point strictly between and such that , then
Solution
Let . Since , we have as well. Then . Since , we have .
So
--Solution by TheMaskedMagician
See Also
1994 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.