Difference between revisions of "2021 AMC 12A Problems/Problem 14"

(Created page with "==Problem== These problems will not be posted until the 2021 AMC12A is released on Thursday, February 4, 2021. ==Solution== The solutions will be posted once the problems are...")
 
Line 1: Line 1:
 
==Problem==
 
==Problem==
These problems will not be posted until the 2021 AMC12A is released on Thursday, February 4, 2021.
+
What is the value of<cmath>\left(\sum_{k=1}^{20} \log_{5^k} 3^{k^2}\right)\cdot\left(\sum_{k=1}^{100} \log_{9^k} 25^k\right)?</cmath><math>\textbf{(A) }21 \qquad \textbf{(B) }100\log_5 3 \qquad \textbf{(C) }200\log_3 5 \qquad \textbf{(D) }2,200\qquad \textbf{(E) }21,000</math>
 +
 
 
==Solution==
 
==Solution==
The solutions will be posted once the problems are posted.
+
{{solution}}
==Note==
+
 
See [[2021 AMC 12A Problems/Problem 1|problem 1]].
 
 
==See also==
 
==See also==
 
{{AMC12 box|year=2021|ab=A|num-b=13|num-a=15}}
 
{{AMC12 box|year=2021|ab=A|num-b=13|num-a=15}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 15:16, 11 February 2021

Problem

What is the value of\[\left(\sum_{k=1}^{20} \log_{5^k} 3^{k^2}\right)\cdot\left(\sum_{k=1}^{100} \log_{9^k} 25^k\right)?\]$\textbf{(A) }21 \qquad \textbf{(B) }100\log_5 3 \qquad \textbf{(C) }200\log_3 5 \qquad \textbf{(D) }2,200\qquad \textbf{(E) }21,000$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png