Difference between revisions of "2021 AMC 12A Problems/Problem 20"
Icematrix2 (talk | contribs) (Created page with "==Problem== These problems will not be posted until the 2021 AMC12A is released on Thursday, February 4, 2021. ==Solution== The solutions will be posted once the problems are...") |
|||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | + | Suppose that on a parabola with vertex <math>V</math> and a focus <math>F</math> there exists a point <math>A</math> such that <math>AF=20</math> and <math>AV=21</math>. What is the sum of all possible values of the length <math>FV?</math> | |
+ | |||
+ | <math>\textbf{(A) }13 \qquad \textbf{(B) }\frac{40}3 \qquad \textbf{(C) }\frac{41}3 \qquad \textbf{(D) }14\qquad \textbf{(E) }\frac{43}3</math> | ||
+ | |||
==Solution== | ==Solution== | ||
− | + | Let <math>\ell</math> be the directrix of <math>\mathcal P</math>; recall that <math>\mathcal P</math> is the set of points <math>T</math> such that the distance from <math>T</math> to <math>\ell</math> is equal to <math>TF</math>. Let <math>P</math> and <math>Q</math> be the orthogonal projections of <math>F</math> and <math>A</math> onto <math>\ell</math>, and further let <math>X</math> and <math>Y</math> be the orthogonal projections of <math>F</math> and <math>V</math> onto <math>AQ</math>. Because <math>AF < AV</math>, there are two possible configurations which may arise, and they are shown below. | |
− | == | + | |
− | + | <asy> | |
+ | import olympiad; | ||
+ | size(230); | ||
+ | defaultpen(linewidth(0.8)+fontsize(11pt)); | ||
+ | real d = 1.1, edge = 2.5, Ax = 1.6; | ||
+ | real f(real x) | ||
+ | { | ||
+ | return 1/(4*d) * x * x; | ||
+ | } | ||
+ | pair V = origin, F = (0,d), la = (-edge,-d), lb = (edge,-d), A = (Ax, f(Ax)); | ||
+ | pair P = foot(F,la,lb), Q = foot(A,la,lb), X = foot(F,A,Q), Y = foot(V,A,Q); | ||
+ | draw(P--F--A--V--Y^^F--X--Q^^rightanglemark(F,P,la,4)^^rightanglemark(A,Q,lb,4)^^rightanglemark(A,X,F,4)^^rightanglemark(A,Y,V,4),red); | ||
+ | draw(graph(f,-2.5,2.5)); | ||
+ | draw(la -- lb); | ||
+ | dot(F^^A^^V); | ||
+ | label("$F$",F,NW); | ||
+ | label("$V$",V,SW); | ||
+ | label("$A$",A,dir(F--A)); | ||
+ | label("$P$",P,S,red); | ||
+ | label("$Q$",Q,S,red); | ||
+ | label("$X$",X,E,red); | ||
+ | label("$Y$",Y,E,red); | ||
+ | </asy> | ||
+ | <asy> | ||
+ | import olympiad; | ||
+ | size(200); | ||
+ | defaultpen(linewidth(0.8)+fontsize(11pt)); | ||
+ | real d = 0.7, edge = 2.5, Ax = 1.9; | ||
+ | real f(real x) | ||
+ | { | ||
+ | return 1/(4*d) * x * x; | ||
+ | } | ||
+ | pair V = origin, F = (0,d), la = (-edge,-d), lb = (edge,-d), A = (Ax, f(Ax)); | ||
+ | pair P = foot(F,la,lb), Q = foot(A,la,lb), X = foot(F,A,Q), Y = foot(V,A,Q); | ||
+ | draw(Q--A--F--P^^F--X^^A--V--Y^^rightanglemark(F,P,la,4)^^rightanglemark(A,Q,lb,4)^^rightanglemark(A,X,F,4)^^rightanglemark(A,Y,V,4),red); | ||
+ | draw(la -- lb); | ||
+ | draw(graph(f,-2.5,2.5)); | ||
+ | dot(F^^A^^V); | ||
+ | label("$F$",F,NW); | ||
+ | label("$V$",V,SW); | ||
+ | label("$A$",A,dir(F--A)); | ||
+ | label("$P$",P,S,red); | ||
+ | label("$Q$",Q,S,red); | ||
+ | label("$X$",X,E,red); | ||
+ | label("$Y$",Y,E,red); | ||
+ | </asy> | ||
+ | Set <math>d = FV</math>, which by the definition of a parabola also equals <math>VP</math>. Then as <math>AQ = AF = 20</math>, we have <math>AY = 20 - d</math> and <math>AX = |20 - 2d|</math>. Since <math>FXYV</math> is a rectangle, <math>FX = VY</math>, so by Pythagorean Theorem on triangles <math>AFX</math> and <math>AVY</math>, | ||
+ | \begin{align*} | ||
+ | 21^2 - (20 - d)^2 &= AV^2 - AY^2 = VY^2\\ | ||
+ | &= FX^2 = AF^2 - AX^2 = 20^2 - (20 - 2d)^2. | ||
+ | \end{align*}This equation simplifies to <math>3d^2 - 40d + 41 = 0</math>, which has solutions <math>d = \tfrac{20\pm\sqrt{277}}3</math>. Both values of <math>d</math> work - the smaller solution with the right configuration and the larger solution with the left configuration - and so the requested answer is <math>\boxed{\tfrac{40}3}</math>. | ||
+ | |||
==See also== | ==See also== | ||
{{AMC12 box|year=2021|ab=A|num-b=19|num-a=21}} | {{AMC12 box|year=2021|ab=A|num-b=19|num-a=21}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 15:09, 11 February 2021
Problem
Suppose that on a parabola with vertex and a focus there exists a point such that and . What is the sum of all possible values of the length
Solution
Let be the directrix of ; recall that is the set of points such that the distance from to is equal to . Let and be the orthogonal projections of and onto , and further let and be the orthogonal projections of and onto . Because , there are two possible configurations which may arise, and they are shown below.
Set , which by the definition of a parabola also equals . Then as , we have and . Since is a rectangle, , so by Pythagorean Theorem on triangles and , \begin{align*} 21^2 - (20 - d)^2 &= AV^2 - AY^2 = VY^2\\ &= FX^2 = AF^2 - AX^2 = 20^2 - (20 - 2d)^2. \end{align*}This equation simplifies to , which has solutions . Both values of work - the smaller solution with the right configuration and the larger solution with the left configuration - and so the requested answer is .
See also
2021 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 19 |
Followed by Problem 21 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.