Difference between revisions of "2002 AMC 12A Problems/Problem 8"

(Solution)
(Problem)
Line 17: Line 17:
 
</asy>
 
</asy>
 
   
 
   
<math>\text{(A)}\ B = W \qquad \text{(B)}\ W = P \qquad \text{(C)}\ B = P \qquad \text{(D)}\ 3B = 2P \qquad \text{(E)}\ 2P = W</math>
+
<math>\textbf{(A)}\ B = W \qquad \textbf{(B)}\ W = P \qquad \textbf{(C)}\ B = P \qquad \textbf{(D)}\ 3B = 2P \qquad \textbf{(E)}\ 2P = W</math>
  
 
==Solution==
 
==Solution==

Revision as of 11:49, 8 November 2021

The following problem is from both the 2002 AMC 12A #8 and 2002 AMC 10A #8, so both problems redirect to this page.


Problem

Betsy designed a flag using blue triangles, small white squares, and a red center square, as shown. Let $B$ be the total area of the blue triangles, $W$ the total area of the white squares, and $P$ the area of the red square. Which of the following is correct?

[asy] unitsize(3mm); fill((-4,-4)--(-4,4)--(4,4)--(4,-4)--cycle,blue); fill((-2,-2)--(-2,2)--(2,2)--(2,-2)--cycle,red); path onewhite=(-3,3)--(-2,4)--(-1,3)--(-2,2)--(-3,3)--(-1,3)--(0,4)--(1,3)--(0,2)--(-1,3)--(1,3)--(2,4)--(3,3)--(2,2)--(1,3)--cycle; path divider=(-2,2)--(-3,3)--cycle; fill(onewhite,white); fill(rotate(90)*onewhite,white); fill(rotate(180)*onewhite,white); fill(rotate(270)*onewhite,white); [/asy]

$\textbf{(A)}\ B = W \qquad \textbf{(B)}\ W = P \qquad \textbf{(C)}\ B = P \qquad \textbf{(D)}\ 3B = 2P \qquad \textbf{(E)}\ 2P = W$

Solution

The blue that's touching the center red square makes up 8 triangles, or 4 squares. Each of the corners is 1 square and each of the edges is 1, totaling 12 squares. There are 12 white squares, thus we have $\boxed{B=W\Rightarrow \text{(A)}}$.

Solution 2

Cut the pattern into 16 square regions and use symmetry. [asy] unitsize(3mm); fill((-4,-4)--(-4,4)--(4,4)--(4,-4)--cycle,blue); fill((-2,-2)--(-2,2)--(2,2)--(2,-2)--cycle,red); path onewhite=(-3,3)--(-2,4)--(-1,3)--(-2,2)--(-3,3)--(-1,3)--(0,4)--(1,3)--(0,2)--(-1,3)--(1,3)--(2,4)--(3,3)--(2,2)--(1,3)--cycle; path divider=(-2,2)--(-3,3)--cycle; fill(onewhite,white); fill(rotate(90)*onewhite,white); fill(rotate(180)*onewhite,white); fill(rotate(270)*onewhite,white); draw((-4,-2)--(4,-2),black); draw((-4,0)--(4,0),black); draw((-4,2)--(4,2),black); draw((-2,-4)--(-2,4),black); draw((0,-4)--(0,4),black); draw((2,-4)--(2,4),black); [/asy]

This clearly shows $\mathbf{(A)}~B=W$.

See Also

2002 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2002 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png