Difference between revisions of "2021 AMC 12A Problems/Problem 7"

(Solution 2)
Line 6: Line 6:
 
==Solution==
 
==Solution==
 
Expanding, we get that the expression is <math>x^2+2xy+y^2+x^2y^2-2xy+1</math> or <math>x^2+y^2+x^2y^2+1</math>. By the trivial inequality(all squares are nonnegative) the minimum value for this is <math>\boxed{(D) 1}</math>, which can be achieved at <math>x=y=0</math>. ~aop2014
 
Expanding, we get that the expression is <math>x^2+2xy+y^2+x^2y^2-2xy+1</math> or <math>x^2+y^2+x^2y^2+1</math>. By the trivial inequality(all squares are nonnegative) the minimum value for this is <math>\boxed{(D) 1}</math>, which can be achieved at <math>x=y=0</math>. ~aop2014
 +
 +
==Solution 2 (Beyond Overkill)==
 +
Like solution 1, expand and simplify the original equation to <math>x^2+y^2+x^2y^2+1</math> and let <math>f(x, y) = x^2+y^2+x^2y^2+1</math>. To find local extrema, find where <math>\nabla f(x, y) = \boldsymbol{0}</math>. First, find the first with respect to x and y and find where they are <math>0</math>:
 +
<cmath> \frac{\partial f}{\partial x} = 2x + 2xy^{2} = 2x(1 + y^{2}) = 0 \implies x = 0</cmath>
 +
<cmath> \frac{\partial f}{\partial y} = 2y + 2yx^{2} = 2y(1 + x^{2}) = 0 \implies y = 0</cmath>
 +
 +
Thus, there is a local extreme at <math>(0, 0)</math>. Because this is the only extreme, we can assume that this is a minimum (though this can also be proven using the partial second derivative test) and the global minimum since it's the only minimum, meaning <math>f(0, 0)</math> is the minimum of <math>f(x, y)</math>. Plugging (0, 0) into f(x, y), we find 1 <math>\implies \boxed{\bold{(D)} \ 1}</math>
  
 
==Video Solution by Hawk Math==
 
==Video Solution by Hawk Math==
 
https://www.youtube.com/watch?v=P5al76DxyHY
 
https://www.youtube.com/watch?v=P5al76DxyHY
 +
 
==See also==
 
==See also==
 
{{AMC12 box|year=2021|ab=A|num-b=6|num-a=8}}
 
{{AMC12 box|year=2021|ab=A|num-b=6|num-a=8}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 15:54, 11 February 2021

Problem

What is the least possible value of $(xy-1)^2+(x+y)^2$ for real numbers $x$ and $y$?

$\textbf{(A)} ~0\qquad\textbf{(B)} ~\frac{1}{4}\qquad\textbf{(C)} ~\frac{1}{2} \qquad\textbf{(D)} ~1 \qquad\textbf{(E)} ~2$

Solution

Expanding, we get that the expression is $x^2+2xy+y^2+x^2y^2-2xy+1$ or $x^2+y^2+x^2y^2+1$. By the trivial inequality(all squares are nonnegative) the minimum value for this is $\boxed{(D) 1}$, which can be achieved at $x=y=0$. ~aop2014

Solution 2 (Beyond Overkill)

Like solution 1, expand and simplify the original equation to $x^2+y^2+x^2y^2+1$ and let $f(x, y) = x^2+y^2+x^2y^2+1$. To find local extrema, find where $\nabla f(x, y) = \boldsymbol{0}$. First, find the first with respect to x and y and find where they are $0$: \[\frac{\partial f}{\partial x} = 2x + 2xy^{2} = 2x(1 + y^{2}) = 0 \implies x = 0\] \[\frac{\partial f}{\partial y} = 2y + 2yx^{2} = 2y(1 + x^{2}) = 0 \implies y = 0\]

Thus, there is a local extreme at $(0, 0)$. Because this is the only extreme, we can assume that this is a minimum (though this can also be proven using the partial second derivative test) and the global minimum since it's the only minimum, meaning $f(0, 0)$ is the minimum of $f(x, y)$. Plugging (0, 0) into f(x, y), we find 1 $\implies \boxed{\bold{(D)} \ 1}$

Video Solution by Hawk Math

https://www.youtube.com/watch?v=P5al76DxyHY

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png