Difference between revisions of "2021 AMC 12A Problems/Problem 21"

(Video Solution by OmegaLearn(Using Ellipse properties and Quadratic Formula ))
Line 13: Line 13:
  
 
Finally, recall that the lengths <math>a</math>, <math>b</math>, and <math>c</math> (where <math>c</math> is the distance between the foci of <math>\mathcal E</math>) satisfy <math>c = \sqrt{a^2 - b^2}</math>. Thus the eccentricity of <math>\mathcal E</math> is <math>\tfrac ca = \sqrt{1 - (\tfrac ba)^2} = \sqrt{\tfrac 16}</math> and the requested answer is <math>\boxed{7\textbf{ (A)}}</math>.
 
Finally, recall that the lengths <math>a</math>, <math>b</math>, and <math>c</math> (where <math>c</math> is the distance between the foci of <math>\mathcal E</math>) satisfy <math>c = \sqrt{a^2 - b^2}</math>. Thus the eccentricity of <math>\mathcal E</math> is <math>\tfrac ca = \sqrt{1 - (\tfrac ba)^2} = \sqrt{\tfrac 16}</math> and the requested answer is <math>\boxed{7\textbf{ (A)}}</math>.
 +
 +
==Solution 2 (Three Variables, Three Equations)==
 +
Completing the square in the original equation, we get <cmath>(z-1)\left((z+1)^2+3\right)\left((z+2)^2+2\right)=0,</cmath> from which <math>z=1,-1\pm\sqrt{3}i,-2\pm\sqrt{2}i.</math> Now, we will find the equation of an ellipse <math>\mathbb{E}</math> that passes through <math>(1,0),(-1,\pm\sqrt3),</math> and <math>(-2,\pm\sqrt2).</math> By symmetry, the center of <math>\mathbb{E}</math> must be on the <math>x</math>-axis.
 +
 +
The formula of <math>\mathbb{E}</math> is <cmath>\frac{(x-h)^2}{a^2}+\frac{y^2}{b^2}=1,</cmath> with the center at <math>(h,0)</math> and the axes' lengths <math>2a</math> and <math>2b.</math> Plugging the points <math>(1,0),(-1,\sqrt3),</math> and <math>(-2,\sqrt2)</math> in, respectively, we get the following system of three equations:
 +
<cmath>\begin{align*}
 +
\frac{(1-h)^2}{a^2}&=1, \\
 +
\frac{(-1-h)^2}{a^2}+\frac{{\sqrt3}^2}{b^2}&=1, \\
 +
\frac{(-2-h)^2}{a^2}+\frac{{\sqrt2}^2}{b^2}&=1.
 +
\end{align*}</cmath>
 +
Clearing fractions gives
 +
<cmath>\begin{align*}
 +
(1-h)^2&=a^2, \\
 +
b^2(-1-h)^2 + 3a^2 &= a^2b^2, \\
 +
b^2(-2-h)^2 + 2a^2 &= a^2b^2.
 +
\end{align*}</cmath>
 +
Since <math>t^2=(-t)^2</math> for all real numbers <math>t,</math> we rewrite the system as
 +
<cmath>\begin{align*}
 +
(1-h)^2&=a^2, \ \ \ \ \ \ \ \ \ \ \ \ &\text{(1)}\\
 +
b^2(1+h)^2 + 3a^2 &= a^2b^2, &\text{(2)}\\
 +
b^2(2+h)^2 + 2a^2 &= a^2b^2. &\text{(3)}
 +
\end{align*}</cmath>
 +
Applying the Transitive Property in <math>\text{(2)}</math> and <math>\text{(3)},</math> we get
 +
<cmath>\begin{align*}
 +
b^2(1+h)^2 + 3a^2 &= b^2(2+h)^2 + 2a^2 \\
 +
a^2 &= b^2\left((2+h)^2-(1+h)^2\right) \\
 +
a^2 &= b^2(2h+3). \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{(4)}
 +
\end{align*}</cmath>
 +
Applying the results of <math>\text{(1)}</math> and <math>\text{(4)}</math> on <math>\text{(2)},</math> we get
 +
<cmath>\begin{align*}
 +
b^2(1+h)^2 + 3\underbrace{b^2(2h+3)}_\text{by (4)} &= \underbrace{(1-h)^2}_\text{by (1)}b^2 \\
 +
(1+h)^2+3(2h+3)&=(1-h)^2 \\
 +
1+2h+h^2+6h+9&=1-2h+h^2 \\
 +
10h&=-9 \\
 +
h&=-\frac{9}{10}.
 +
\end{align*}</cmath>
 +
Substituting this into <math>\text{(1)},</math> we get <math>a^2=\frac{361}{100}.</math>
 +
 +
Substituting the current results into <math>\text{(4)},</math> we get <math>b^2=\frac{361}{120}.</math>
 +
 +
Finally, we have
 +
<cmath>c^2 = a^2-b^2 = 361\left(\frac{1}{100}-\frac{1}{120}\right) = \frac{361}{600},</cmath>
 +
and <cmath>\frac{c}{a}=\sqrt{\frac{c^2}{a^2}}=\sqrt{\frac{361/600}{361/100}}=\sqrt{\frac 16}.</cmath>
 +
Our answer is <math>1+6=\boxed{\textbf{(A) } 7}.</math>
 +
 +
~MRENTHUSIASM
  
 
== Video Solution by OmegaLearn (Using Ellipse properties & Quadratic) ==
 
== Video Solution by OmegaLearn (Using Ellipse properties & Quadratic) ==

Revision as of 21:48, 13 February 2021

Problem

The five solutions to the equation \[(z-1)(z^{2}+2z+4)(z^{2}+4z+6)=0\] may be written in the form $x_{k}+y_{k}i$ for $1\leq k\leq 5$, where $x_{k}$ and $y_{k}$ are real. Let $\mathbb{E}$ be the unique ellipse that passes through the points $(x_{1}, y_{1}), (x_{2}, y_{2}), (x_{3}, y_{3}), (x_{4}, y_{4}),$ and $(x_{5}, y_{5})$. The excentricity of $\mathbb{E}$ can be written in the form $\frac{m}{\sqrt{n}}$ where $m$ and $n$ are positive integers and $n$ is not divisible by the square of any prime. What is $m+n$?

$\textbf{(A) } 7\qquad\textbf{(B) } 9\qquad\textbf{(C) } 11\qquad\textbf{(D) } 13\qquad\textbf{(E) } 15\qquad$

Solution

The solutions to this equation are $z = 1$, $z = -1 \pm i\sqrt 3$, and $z = -2\pm i\sqrt 2$. Consider the five points $(1,0)$, $(-1,\pm\sqrt 3)$, and $(-2,\pm\sqrt 2)$; these are the five points which lie on $\mathcal E$. Note that since these five points are symmetric about the $x$-axis, so must $\mathcal E$.

Now let $r:= b/a$ denote the ratio of the length of the minor axis of $\mathcal E$ to the length of its major axis. Remark that if we perform a transformation of the plane which scales every $x$-coordinate by a factor of $r$, $\mathcal E$ is sent to a circle $\mathcal E'$. Thus, the problem is equivalent to finding the value of $r$ such that $(r,0)$, $(-r,\pm\sqrt 3)$, and $(-2r,\pm\sqrt 2)$ all lie on a common circle; equivalently, it suffices to determine the value of $r$ such that the circumcenter of the triangle formed by the points $P_1 = (r,0)$, $P_2 = (-r,\sqrt 3)$, and $P_3 = (-2r,\sqrt 2)$ lies on the $x$-axis.

Recall that the circumcenter of a triangle $ABC$ is the intersection point of the perpendicular bisectors of its three sides. The equations of the perpendicular bisectors of the segments $\overline{P_1P_2}$ and $\overline{P_1P_3}$ are\[y = \tfrac{\sqrt 3}2 + \tfrac{2r}{\sqrt 3}x\qquad\text{and}\qquad y = \tfrac{\sqrt 2}2 + \tfrac{3r}{\sqrt 2}(x + \tfrac r2)\]respectively. These two lines have different slopes for $r\neq 0$, so indeed they will intersect at some point $(x_0,y_0)$; we want $y_0 = 0$. Plugging $y = 0$ into the first equation yields $x = -\tfrac{3}{4r}$, and so plugging $y=0$ into the second equation and simplifying yields\[-\tfrac{1}{3r} = x + \tfrac r2 = -\tfrac{3}{4r} + \tfrac{r}{2}.\]Solving yields $r=\sqrt{\tfrac 56}$.

Finally, recall that the lengths $a$, $b$, and $c$ (where $c$ is the distance between the foci of $\mathcal E$) satisfy $c = \sqrt{a^2 - b^2}$. Thus the eccentricity of $\mathcal E$ is $\tfrac ca = \sqrt{1 - (\tfrac ba)^2} = \sqrt{\tfrac 16}$ and the requested answer is $\boxed{7\textbf{ (A)}}$.

Solution 2 (Three Variables, Three Equations)

Completing the square in the original equation, we get \[(z-1)\left((z+1)^2+3\right)\left((z+2)^2+2\right)=0,\] from which $z=1,-1\pm\sqrt{3}i,-2\pm\sqrt{2}i.$ Now, we will find the equation of an ellipse $\mathbb{E}$ that passes through $(1,0),(-1,\pm\sqrt3),$ and $(-2,\pm\sqrt2).$ By symmetry, the center of $\mathbb{E}$ must be on the $x$-axis.

The formula of $\mathbb{E}$ is \[\frac{(x-h)^2}{a^2}+\frac{y^2}{b^2}=1,\] with the center at $(h,0)$ and the axes' lengths $2a$ and $2b.$ Plugging the points $(1,0),(-1,\sqrt3),$ and $(-2,\sqrt2)$ in, respectively, we get the following system of three equations: \begin{align*} \frac{(1-h)^2}{a^2}&=1, \\ \frac{(-1-h)^2}{a^2}+\frac{{\sqrt3}^2}{b^2}&=1, \\ \frac{(-2-h)^2}{a^2}+\frac{{\sqrt2}^2}{b^2}&=1. \end{align*} Clearing fractions gives \begin{align*} (1-h)^2&=a^2, \\ b^2(-1-h)^2 + 3a^2 &= a^2b^2, \\ b^2(-2-h)^2 + 2a^2 &= a^2b^2. \end{align*} Since $t^2=(-t)^2$ for all real numbers $t,$ we rewrite the system as \begin{align*} (1-h)^2&=a^2, \ \ \ \ \ \ \ \ \ \ \ \ &\text{(1)}\\ b^2(1+h)^2 + 3a^2 &= a^2b^2, &\text{(2)}\\ b^2(2+h)^2 + 2a^2 &= a^2b^2. &\text{(3)} \end{align*} Applying the Transitive Property in $\text{(2)}$ and $\text{(3)},$ we get \begin{align*} b^2(1+h)^2 + 3a^2 &= b^2(2+h)^2 + 2a^2 \\ a^2 &= b^2\left((2+h)^2-(1+h)^2\right) \\ a^2 &= b^2(2h+3). \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{(4)} \end{align*} Applying the results of $\text{(1)}$ and $\text{(4)}$ on $\text{(2)},$ we get \begin{align*} b^2(1+h)^2 + 3\underbrace{b^2(2h+3)}_\text{by (4)} &= \underbrace{(1-h)^2}_\text{by (1)}b^2 \\ (1+h)^2+3(2h+3)&=(1-h)^2 \\ 1+2h+h^2+6h+9&=1-2h+h^2 \\ 10h&=-9 \\ h&=-\frac{9}{10}. \end{align*} Substituting this into $\text{(1)},$ we get $a^2=\frac{361}{100}.$

Substituting the current results into $\text{(4)},$ we get $b^2=\frac{361}{120}.$

Finally, we have \[c^2 = a^2-b^2 = 361\left(\frac{1}{100}-\frac{1}{120}\right) = \frac{361}{600},\] and \[\frac{c}{a}=\sqrt{\frac{c^2}{a^2}}=\sqrt{\frac{361/600}{361/100}}=\sqrt{\frac 16}.\] Our answer is $1+6=\boxed{\textbf{(A) } 7}.$

~MRENTHUSIASM

Video Solution by OmegaLearn (Using Ellipse properties & Quadratic)

https://youtu.be/eIYFQSeIRzM

~ pi_is_3.14

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png