Difference between revisions of "2021 AMC 12A Problems/Problem 2"

Line 12: Line 12:
 
<math>\textbf{(E) }</math> It is always true.
 
<math>\textbf{(E) }</math> It is always true.
  
==Solution==
+
==Solution 1==
 
Square both sides to get <math>a^{2}+b^{2}=a^{2}+2ab+b^{2}</math>. Then, <math>0=2ab\rightarrow ab=0</math>. Also, it is clear that both sides of the equation must be nonnegative. The answer is <math>\boxed{\textbf{(D)}}</math>.  
 
Square both sides to get <math>a^{2}+b^{2}=a^{2}+2ab+b^{2}</math>. Then, <math>0=2ab\rightarrow ab=0</math>. Also, it is clear that both sides of the equation must be nonnegative. The answer is <math>\boxed{\textbf{(D)}}</math>.  
  

Revision as of 11:57, 12 February 2021

Problem

Under what conditions does $\sqrt{a^2+b^2}=a+b$ hold, where $a$ and $b$ are real numbers?

$\textbf{(A) }$ It is never true.

$\textbf{(B) }$ It is true if and only if $ab=0$.

$\textbf{(C) }$ It is true if and only if $a+b\ge 0$.

$\textbf{(D) }$ It is true if and only if $ab=0$ and $a+b\ge 0$.

$\textbf{(E) }$ It is always true.

Solution 1

Square both sides to get $a^{2}+b^{2}=a^{2}+2ab+b^{2}$. Then, $0=2ab\rightarrow ab=0$. Also, it is clear that both sides of the equation must be nonnegative. The answer is $\boxed{\textbf{(D)}}$.

Solution 2 (Quick Inspection)

The left side of the original equation is the arithmetic square root, which is always nonnegative. So, we need $a+b\ge 0,$ which eliminates $\textbf{(A)}$ and $\textbf{(B)}.$ Next, picking $(a,b)=(1,2)$ reveals that $\textbf{(C)}$ and $\textbf{(E)}$ are both incorrect. By POE (Process of Elimination), the answer is $\boxed{\textbf{(D)}}.$ ~MRENTHUSIASM

Solution 3 (Graphing)

If we graph $\sqrt{x^2+y^2}=x+y,$ then we get the positive $x$-axis and the positive $y$-axis, plus the origin. Therefore, the answer is $\boxed{\textbf{(D)}}.$ ~MRENTHUSIASM (credit given to TheAMCHub)

Video Solution by Hawk Math

https://www.youtube.com/watch?v=P5al76DxyHY

Video Solution by OmegaLearn (Using logic and analyzing answer choices)

https://youtu.be/Yp2NfDk_D-g

~ pi_is_3.14

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png