Difference between revisions of "2006 AMC 10A Problems/Problem 21"
(→Problem) |
Arcticturn (talk | contribs) (→Solution (Complementary Counting)) |
||
Line 17: | Line 17: | ||
Therefore, the total number of positive 4-digit integers that have at least one 2 or 3 in their decimal representation is <math>9000-3584=\boxed{5416} \Longrightarrow \mathrm{(E)} </math> | Therefore, the total number of positive 4-digit integers that have at least one 2 or 3 in their decimal representation is <math>9000-3584=\boxed{5416} \Longrightarrow \mathrm{(E)} </math> | ||
+ | |||
+ | ==Solution (Casework)== | ||
== See also == | == See also == |
Revision as of 18:39, 25 October 2021
Contents
Problem
How many four-digit positive integers have at least one digit that is a or a ?
Video Solution
https://youtu.be/0W3VmFp55cM?t=3291
~ pi_is_3.14
Solution (Complementary Counting)
Since we are asked for the number of positive 4-digit integers with at least 2 or 3 in it, we can find this by finding the total number of 4-digit integers and subtracting off those which do not have any 2s or 3s as digits.
The total number of 4-digit integers is , since we have 10 choices for each digit except the first (which can't be 0).
Similarly, the total number of 4-digit integers without any 2 or 3 is .
Therefore, the total number of positive 4-digit integers that have at least one 2 or 3 in their decimal representation is
Solution (Casework)
See also
2006 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.