Difference between revisions of "2000 AIME II Problems/Problem 9"
m (→See also) |
(minor tex) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | Note that if z is on the unit circle in the complex plane, then <math>z = e^{i\theta} = \cos \theta + i\sin \theta</math> and <math>\frac 1z= e^{-i\theta} = \cos \theta - i\sin \theta</math> | + | Note that if <math>z</math> is on the [[unit circle]] in the complex plane, then <math>z = e^{i\theta} = \cos \theta + i\sin \theta</math> and <math>\frac 1z= e^{-i\theta} = \cos \theta - i\sin \theta</math>. |
− | We have <math>z+\frac 1z = 2\cos \theta = 2\cos 3^\circ</math> and <math>\theta = 3^\circ</math> | + | We have <math>z+\frac 1z = 2\cos \theta = 2\cos 3^\circ</math> and <math>\theta = 3^\circ</math>. Alternatively, we could let <math>z = a + bi</math> and solve to get <math>z=\cos 3^\circ + i\sin 3^\circ</math>. |
− | Alternatively, we could let <math>z = a + bi</math> and solve to get <math>z=\cos 3^\circ + i\sin 3^\circ</math> | ||
Using [[De Moivre's Theorem]] we have <math>z^{2000} = \cos 6000^\circ + i\sin 6000^\circ</math>, <math>6000 = 16(360) + 240</math>, so | Using [[De Moivre's Theorem]] we have <math>z^{2000} = \cos 6000^\circ + i\sin 6000^\circ</math>, <math>6000 = 16(360) + 240</math>, so | ||
− | <math>z^{2000} = \cos 240^\circ + i\sin 240^\circ</math> | + | <math>z^{2000} = \cos 240^\circ + i\sin 240^\circ</math>. |
− | We want <math>z^{2000}+\frac 1{z^{2000}} = 2\cos 240^\circ = -1</math> | + | We want <math>z^{2000}+\frac 1{z^{2000}} = 2\cos 240^\circ = -1</math>. |
Finally, the least integer greater than <math>-1</math> is <math>\boxed{000}</math>. | Finally, the least integer greater than <math>-1</math> is <math>\boxed{000}</math>. | ||
+ | == See also == | ||
{{AIME box|year=2000|n=II|num-b=8|num-a=10}} | {{AIME box|year=2000|n=II|num-b=8|num-a=10}} | ||
+ | |||
+ | [[Category:Intermediate Algebra Problems]] |
Revision as of 09:28, 30 August 2008
Problem
Given that is a complex number such that , find the least integer that is greater than .
Solution
Note that if is on the unit circle in the complex plane, then and .
We have and . Alternatively, we could let and solve to get .
Using De Moivre's Theorem we have , , so .
We want .
Finally, the least integer greater than is .
See also
2000 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |