Difference between revisions of "2006 AMC 10A Problems/Problem 15"

(Problem)
(Problem)
Line 13: Line 13:
 
draw((-6,0){down}..{right}(0,-6),blue);
 
draw((-6,0){down}..{right}(0,-6),blue);
 
[/asy]
 
[/asy]
 
[asy]
 
defaultpen(linewidth(.8pt)+fontsize(6pt));
 
pair A=(0,0), B=(0,3.73), C=(1,0), D=(0,1.73);
 
draw(D--A--C--B--D--C);
 
label("<math>15</math>",(0.1,2.8)); label("<math>30</math>",(.1,1.3)); label("<math>60</math>",(.8,.1)); label("<math>15</math>",(.6,1));
 
label("<math>x</math>",(A+C)/2,S); label("<math>2x</math>",(C+D)/2,SW); label("<math>2x</math>",(B+D)/2,W); label("<math>\sqrt3x</math>",(A+D)/2,W);[/asy]
 
  
 
<math>\mathrm{(A) \ } 29\qquad\mathrm{(B) \ } 42\qquad\mathrm{(C) \ } 45\qquad\mathrm{(D) \ } 47\qquad\mathrm{(E) \ } 50\qquad</math>
 
<math>\mathrm{(A) \ } 29\qquad\mathrm{(B) \ } 42\qquad\mathrm{(C) \ } 45\qquad\mathrm{(D) \ } 47\qquad\mathrm{(E) \ } 50\qquad</math>

Revision as of 12:59, 27 July 2010

Problem

Odell and Kershaw run for 30 minutes on a circular track. Odell runs clockwise at 250 m/min and uses the inner lane with a radius of 50 meters. Kershaw runs counterclockwise at 300 m/min and uses the outer lane with a radius of 60 meters, starting on the same radial line as Odell. How many times after the start do they pass each other?

[asy] unitsize(1cm); draw((5,0){up}..{left}(0,5),red); draw((-5,0){up}..{right}(0,5),red); draw((5,0){down}..{left}(0,-5),red); draw((-5,0){down}..{right}(0,-5),red); draw((6,0){up}..{left}(0,6),blue); draw((-6,0){up}..{right}(0,6),blue); draw((6,0){down}..{left}(0,-6),blue); draw((-6,0){down}..{right}(0,-6),blue); [/asy]

$\mathrm{(A) \ } 29\qquad\mathrm{(B) \ } 42\qquad\mathrm{(C) \ } 45\qquad\mathrm{(D) \ } 47\qquad\mathrm{(E) \ } 50\qquad$

Solution


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


Since $d = rt$, we note that Odell runs one lap in $\frac{2 \cdot 50\pi}{250} = \frac{2\pi}{5}$ minutes, while Kershaw also runs one lap in $\frac{2 \cdot 60\pi}{300} = \frac{2\pi}{5}$ minutes. They take the same amount of time to run a lap, and since they are running in opposite directions they will meet exactly twice per lap (once at the starting point, the other at the half-way point). Thus, there are $\frac{30}{\frac{2\pi}{5}} \approx 23.8$ laps run by both, or $\lfloor 2\cdot 23.8\rfloor = 23 \cdot 2 + 1 = 47$ meeting points $\Longrightarrow \mathrm{(D)}$.

See Also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions