Difference between revisions of "2006 AMC 10A Problems/Problem 15"

(Problem)
(Problem)
Line 2: Line 2:
 
Odell and Kershaw run for 30 minutes on a [[circle|circular]] track. Odell runs [[clockwise]] at 250 m/min and uses the inner lane with a [[radius]] of 50 meters. Kershaw runs [[counterclockwise]] at 300 m/min and uses the outer lane with a radius of 60 meters, starting on the same radial [[line]] as Odell. How many times after the start do they pass each other?  
 
Odell and Kershaw run for 30 minutes on a [[circle|circular]] track. Odell runs [[clockwise]] at 250 m/min and uses the inner lane with a [[radius]] of 50 meters. Kershaw runs [[counterclockwise]] at 300 m/min and uses the outer lane with a radius of 60 meters, starting on the same radial [[line]] as Odell. How many times after the start do they pass each other?  
  
[asy]
+
<center><asy>
 
unitsize(1cm);
 
unitsize(1cm);
 
draw((5,0){up}..{left}(0,5),red);
 
draw((5,0){up}..{left}(0,5),red);
Line 12: Line 12:
 
draw((6,0){down}..{left}(0,-6),blue);
 
draw((6,0){down}..{left}(0,-6),blue);
 
draw((-6,0){down}..{right}(0,-6),blue);
 
draw((-6,0){down}..{right}(0,-6),blue);
[/asy]
+
</center></asy>
  
 
<math>\mathrm{(A) \ } 29\qquad\mathrm{(B) \ } 42\qquad\mathrm{(C) \ } 45\qquad\mathrm{(D) \ } 47\qquad\mathrm{(E) \ } 50\qquad</math>
 
<math>\mathrm{(A) \ } 29\qquad\mathrm{(B) \ } 42\qquad\mathrm{(C) \ } 45\qquad\mathrm{(D) \ } 47\qquad\mathrm{(E) \ } 50\qquad</math>

Revision as of 13:00, 27 July 2010

Problem

Odell and Kershaw run for 30 minutes on a circular track. Odell runs clockwise at 250 m/min and uses the inner lane with a radius of 50 meters. Kershaw runs counterclockwise at 300 m/min and uses the outer lane with a radius of 60 meters, starting on the same radial line as Odell. How many times after the start do they pass each other?

unitsize(1cm);
draw((5,0){up}..{left}(0,5),red);
draw((-5,0){up}..{right}(0,5),red);
draw((5,0){down}..{left}(0,-5),red);
draw((-5,0){down}..{right}(0,-5),red);
draw((6,0){up}..{left}(0,6),blue);
draw((-6,0){up}..{right}(0,6),blue);
draw((6,0){down}..{left}(0,-6),blue);
draw((-6,0){down}..{right}(0,-6),blue);
</center> (Error making remote request. Unknown error_msg)

$\mathrm{(A) \ } 29\qquad\mathrm{(B) \ } 42\qquad\mathrm{(C) \ } 45\qquad\mathrm{(D) \ } 47\qquad\mathrm{(E) \ } 50\qquad$

Solution


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


Since $d = rt$, we note that Odell runs one lap in $\frac{2 \cdot 50\pi}{250} = \frac{2\pi}{5}$ minutes, while Kershaw also runs one lap in $\frac{2 \cdot 60\pi}{300} = \frac{2\pi}{5}$ minutes. They take the same amount of time to run a lap, and since they are running in opposite directions they will meet exactly twice per lap (once at the starting point, the other at the half-way point). Thus, there are $\frac{30}{\frac{2\pi}{5}} \approx 23.8$ laps run by both, or $\lfloor 2\cdot 23.8\rfloor = 23 \cdot 2 + 1 = 47$ meeting points $\Longrightarrow \mathrm{(D)}$.

See Also

2006 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions