Difference between revisions of "2002 AMC 12B Problems/Problem 3"
Line 16: | Line 16: | ||
[[Category:Introductory Number Theory Problems]] | [[Category:Introductory Number Theory Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 09:21, 4 July 2013
- The following problem is from both the 2002 AMC 12B #3 and 2002 AMC 10B #6, so both problems redirect to this page.
Problem
For how many positive integers is a prime number?
Solution
Factoring, we get . Exactly of and must be and the other a prime number. If , then , and , which is not prime. On the other hand, if , then , and , which is a prime number. The answer is .
See also
2002 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2002 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 2 |
Followed by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.