Difference between revisions of "2018 AMC 10A Problems/Problem 9"
(→Solution 2) |
m |
||
Line 1: | Line 1: | ||
− | All of the triangles in the diagram below are similar to | + | All of the triangles in the diagram below are similar to isosceles triangle <math>ABC</math>, in which <math>AB=AC</math>. Each of the 7 smallest triangles has area 1, and <math>\triangle ABC</math> has area 40. What is the area of trapezoid <math>DBCE</math>? |
<asy> | <asy> |
Revision as of 16:06, 10 February 2018
All of the triangles in the diagram below are similar to isosceles triangle , in which . Each of the 7 smallest triangles has area 1, and has area 40. What is the area of trapezoid ?
Solutions
Solution 1
Let be the area of . Note that is comprised of the small isosceles triangles and a triangle similar to with side length ratio (so an area ratio of ). Thus, we have This gives , so the area of .
Solution 2
Let the base length of the small triangle be . Then, there is a triangle encompassing the 7 small triangles and sharing the top angle with a base length of . Because the area is proportional to the square of the side, let the base be . Then triangle has an area of 16. So the area is .
Solution 3
Notice . Let the base of the small triangles of area 1 be , then the base length of . Notice, , then Thus,
Solution by ktong
See Also
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.