Difference between revisions of "2017 AMC 10B Problems/Problem 24"
Shurong.ge (talk | contribs) |
Aops turtle (talk | contribs) m (→Solution 2) |
||
Line 25: | Line 25: | ||
==Solution 2== | ==Solution 2== | ||
Without loss of generality, let the centroid of <math>\triangle ABC</math> be <math>G = (-1,-1)</math>. Then, one of the vertices must be the other curve of the hyperbola. Without loss of generality, let <math>A = (1,1)</math>. Then, point <math>B</math> must be the reflection of <math>C</math> across the line <math>y=x</math>, so let <math>B = \left(a,\frac{1}{a}\right)</math> and <math>C=\left(\frac{1}{a},a\right)</math>, where <math>a <-1</math>. Because <math>G</math> is the centroid, the average of the <math>x</math>-coordinates of the vertices of the triangle is <math>-1</math>. So we know that <math>a + 1/a+ 1 = -3</math>. Multiplying by <math>a</math> and solving gives us <math>a=-2-\sqrt{3}</math>. So <math>B=(-2-\sqrt{3},-2+\sqrt{3})</math> and <math>C=(-2+\sqrt{3},-2-\sqrt{3})</math>. So <math>BC=2\sqrt{6}</math>, and finding the square of the area gives us <math>\boxed{\textbf{(C) } 108}</math>. | Without loss of generality, let the centroid of <math>\triangle ABC</math> be <math>G = (-1,-1)</math>. Then, one of the vertices must be the other curve of the hyperbola. Without loss of generality, let <math>A = (1,1)</math>. Then, point <math>B</math> must be the reflection of <math>C</math> across the line <math>y=x</math>, so let <math>B = \left(a,\frac{1}{a}\right)</math> and <math>C=\left(\frac{1}{a},a\right)</math>, where <math>a <-1</math>. Because <math>G</math> is the centroid, the average of the <math>x</math>-coordinates of the vertices of the triangle is <math>-1</math>. So we know that <math>a + 1/a+ 1 = -3</math>. Multiplying by <math>a</math> and solving gives us <math>a=-2-\sqrt{3}</math>. So <math>B=(-2-\sqrt{3},-2+\sqrt{3})</math> and <math>C=(-2+\sqrt{3},-2-\sqrt{3})</math>. So <math>BC=2\sqrt{6}</math>, and finding the square of the area gives us <math>\boxed{\textbf{(C) } 108}</math>. | ||
− | |||
==Solution 3== | ==Solution 3== |
Revision as of 15:49, 17 January 2020
Contents
[hide]Problem 24
The vertices of an equilateral triangle lie on the hyperbola , and a vertex of this hyperbola is the centroid of the triangle. What is the square of the area of the triangle?
Solution 1
Without loss of generality, let the centroid of be . The centroid of an equilateral triangle is the same as the circumcenter. It follows that the circumcircle must intersect the graph exactly three times. Therefore, , so , so since is isosceles and , then by Law of Cosines, . Alternatively, we can use the fact that the circumradius of an equilateral triangle is equal to . Therefore, the area of the triangle is , so the square of the area of the triangle is .
-Asymptote diagram by Shurong.ge
Solution 2
Without loss of generality, let the centroid of be . Then, one of the vertices must be the other curve of the hyperbola. Without loss of generality, let . Then, point must be the reflection of across the line , so let and , where . Because is the centroid, the average of the -coordinates of the vertices of the triangle is . So we know that . Multiplying by and solving gives us . So and . So , and finding the square of the area gives us .
Solution 3
Without loss of generality, let the centroid of be and let point be . It is known that the centroid is equidistant from the three vertices of . Because we have the coordinates of both and , we know that the distance from to any vertice of is . Therefore, . It follows that from , where and , using the formula for the area of a triangle with sine . Because and are congruent to , they also have an area of . Therefore, . Squaring that gives us the answer of .
Solution 4 (5-second solution)
Without loss of generality, let the centroid of the triangle be . By symmetry, the other vertex is . The distance between these two points is , so the height of the triangle is , the side length is , and the area is , yielding an answer of . -Stormersyle
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.