Difference between revisions of "2017 AMC 10B Problems/Problem 8"

m
(Solutions)
Line 4: Line 4:
 
<math>\textbf{(A)}\ (-8, 9)\qquad\textbf{(B)}\ (-4, 8)\qquad\textbf{(C)}\ (-4, 9)\qquad\textbf{(D)}\ (-2, 3)\qquad\textbf{(E)}\ (-1, 0)</math>
 
<math>\textbf{(A)}\ (-8, 9)\qquad\textbf{(B)}\ (-4, 8)\qquad\textbf{(C)}\ (-4, 9)\qquad\textbf{(D)}\ (-2, 3)\qquad\textbf{(E)}\ (-1, 0)</math>
  
==Solutions==
+
==Solution 1==
 +
Since <math>AB = AC</math>, then <math>\triangle ABC</math> is isosceles, so <math>BD = CD</math>. Therefore, the coordinates of <math>C</math> are <math>(-1 - 3, 3 + 6) = \boxed{\textbf{(C) } (-4,9)}</math>.
 +
 
 
<asy>
 
<asy>
 
pair A,B,C,D;
 
pair A,B,C,D;
Line 20: Line 22:
 
</asy>
 
</asy>
  
===Solution 1===
+
==Solution 2==
Since <math>AB = AC</math>, then <math>\triangle ABC</math> is isosceles, so <math>BD = CD</math>. Therefore, the coordinates of <math>C</math> are <math>(-1 - 3, 3 + 6) = \boxed{\textbf{(C) } (-4,9)}</math>.
 
 
 
===Solution 2===
 
 
Calculating the equation of the line running between points <math>B</math> and <math>D</math>, <math>y = -2x + 1</math>. The only coordinate of <math>C</math> that is also on this line is <math>\boxed{\textbf{(C) } (-4,9)}</math>.
 
Calculating the equation of the line running between points <math>B</math> and <math>D</math>, <math>y = -2x + 1</math>. The only coordinate of <math>C</math> that is also on this line is <math>\boxed{\textbf{(C) } (-4,9)}</math>.
  
===Solution 3===
+
==Solution 3==
 
Similar to the first solution, because the triangle is isosceles, then the line drawn in the middle separates the triangle into two smaller congruent triangles. To get from <math>B</math> to the <math>D</math>r, we go to the right <math>3</math> and up <math>6</math>. Then to get to point <math>C</math> from point <math>D</math>, we go to the right <math>3</math> and up <math>6</math>, getting us the coordinates <math>\boxed{\textbf{(C) } (-4,9)}</math>. ~<math>\text{KLBBC}</math>
 
Similar to the first solution, because the triangle is isosceles, then the line drawn in the middle separates the triangle into two smaller congruent triangles. To get from <math>B</math> to the <math>D</math>r, we go to the right <math>3</math> and up <math>6</math>. Then to get to point <math>C</math> from point <math>D</math>, we go to the right <math>3</math> and up <math>6</math>, getting us the coordinates <math>\boxed{\textbf{(C) } (-4,9)}</math>. ~<math>\text{KLBBC}</math>
  

Revision as of 17:37, 17 January 2021

Problem

Points $A(11, 9)$ and $B(2, -3)$ are vertices of $\triangle ABC$ with $AB=AC$. The altitude from $A$ meets the opposite side at $D(-1, 3)$. What are the coordinates of point $C$?

$\textbf{(A)}\ (-8, 9)\qquad\textbf{(B)}\ (-4, 8)\qquad\textbf{(C)}\ (-4, 9)\qquad\textbf{(D)}\ (-2, 3)\qquad\textbf{(E)}\ (-1, 0)$

Solution 1

Since $AB = AC$, then $\triangle ABC$ is isosceles, so $BD = CD$. Therefore, the coordinates of $C$ are $(-1 - 3, 3 + 6) = \boxed{\textbf{(C) } (-4,9)}$.

[asy] pair A,B,C,D; A=(11,9); B=(2,-3); C=(-4,9); D=(-1,3); draw(A--B--C--cycle); draw(A--D); draw(rightanglemark(A,D,B)); label("$A$",A,E); label("$B$",B,S); label("$D$",D,W); label("$C$",C,N); [/asy]

Solution 2

Calculating the equation of the line running between points $B$ and $D$, $y = -2x + 1$. The only coordinate of $C$ that is also on this line is $\boxed{\textbf{(C) } (-4,9)}$.

Solution 3

Similar to the first solution, because the triangle is isosceles, then the line drawn in the middle separates the triangle into two smaller congruent triangles. To get from $B$ to the $D$r, we go to the right $3$ and up $6$. Then to get to point $C$ from point $D$, we go to the right $3$ and up $6$, getting us the coordinates $\boxed{\textbf{(C) } (-4,9)}$. ~$\text{KLBBC}$

Video Solution

https://youtu.be/4rRckA3gcPU

~savannahsolver

Video Solution 2

https://youtu.be/XRfOULUmWbY?t=367

~IceMatrix

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png