Difference between revisions of "2021 AMC 12A Problems/Problem 24"

(Solution 2)
(Changed the order a bit.)
Line 4: Line 4:
 
<math>\textbf{(A) } 110\qquad\textbf{(B) } 114\qquad\textbf{(C) } 118\qquad\textbf{(D) } 122\qquad\textbf{(E) } 126\qquad</math>
 
<math>\textbf{(A) } 110\qquad\textbf{(B) } 114\qquad\textbf{(C) } 118\qquad\textbf{(D) } 122\qquad\textbf{(E) } 126\qquad</math>
  
==Diagram==
+
==Solution 1==
 +
===Diagram===
 +
[[File: 2021 AMC 12A Problem 24.png|center]]
 +
~MRENTHUSIASM (by Geometry Expressions)
 +
 
 +
===Solution===
 +
Let <math>O=\Gamma</math> be the center of the semicircle, <math>X=\Omega</math> be the center of the circle, and <math>M</math> be the midpoint of <math>\overline{QR}.</math> By the Perpendicular Chord Theorem Converse, we have <math>\overline{XM}\perp\overline{QR}</math> and <math>\overline{OM}\perp\overline{QR}.</math> Together, points <math>O, X,</math> and <math>M</math> must be collinear.
 +
 
 +
Applying the Extended Law of Sines on <math>\triangle PQR,</math> we have<cmath>XP=\frac{QR}{2\cdot\sin \angle QPR}=\frac{3\sqrt3}{2\cdot\frac{\sqrt3}{2}}=3,</cmath>in which the radius of <math>\odot \Omega</math> is <math>3.</math>
 +
 
 +
By the SAS Congruence, we have <math>\triangle QXM\cong\triangle RXM,</math> both of which are <math>30^\circ</math>-<math>60^\circ</math>-<math>90^\circ</math> triangles. By the side-length ratios, <math>RM=\frac{3\sqrt3}{2}, RX=3,</math> and <math>MX=\frac{3}{2}.</math> By the Pythagorean Theorem in <math>\triangle ORM,</math> we get <math>OM=\frac{13}{2}</math> and <math>OX=OM-XM=5.</math> By the Pythagorean Theorem on <math>\triangle OXP,</math> we obtain <math>OP=4.</math>
 +
 
 +
[[File: 2021 AMC 12A Problem 24(2) (Revised).png|center]]
 +
As shown above, we construct an altitude <math>\overline{PC}</math> of <math>\triangle PQR.</math> Since <math>\overline{PC}\perp\overline{RQ}</math> and <math>\overline{OM}\perp\overline{RQ},</math> we know that <math>\overline{PC}\parallel\overline{OM}.</math> We construct <math>D</math> on <math>\overline{PC}</math> such that <math>\overline{XD}\perp\overline{PC}.</math> Clearly, <math>MXDC</math> is a rectangle. Since <math>\angle XPD=\angle OXP</math> by alternate interior angles, we have <math>\triangle XPD\sim\triangle OXP</math> by the AA Similarity, with ratio of similitude <math>\frac{XP}{OX}=\frac 35.</math> Therefore, we get that <math>PD=\frac 95</math> and <math>PC=PD+DC=PD+MX=\frac 95 + \frac 32 = \frac{33}{10}.</math>
 +
 
 +
The area of <math>\triangle PQR</math> is<cmath>\frac12(RQ)(PC)=\frac12\left(3\sqrt3\right)\left(\frac{33}{10}\right)=\frac{99\sqrt3}{20},</cmath>and the answer is <math>99+3+20=\boxed{\textbf{(D) } 122}.</math>
 +
 
 +
~MRENTHUSIASM
 +
 
 +
==Solution==
 +
===Diagram===
 
[asy]
 
[asy]
 
draw(circle((7,0),7));
 
draw(circle((7,0),7));
Line 34: Line 54:
 
someone pls make this asymptote code work
 
someone pls make this asymptote code work
  
==Solution==
+
===Solution===
 
Suppose we label the points as shown in the diagram above, where <math>C</math> is the center of the semicircle and <math>O</math> is the center of the circle tangent to <math>\overline{AB}</math>. Since <math>\angle QPR = 60^{\circ}</math>, we have <math>\angle QOR = 2\cdot 60^{\circ}=120^{\circ}</math> and <math>\triangle QOR</math> is a <math>30-30-120</math> triangle, which can be split into two <math>30-60-90</math> triangles by the altitude from <math>O</math>. Since <math>QR=3\sqrt{3},</math> we know <math>OQ=OR=\tfrac{3\sqrt{3}}{\sqrt{3}}=3</math> by <math>30-60-90</math> triangles. The area of this part of <math>\triangle PQR</math> is <math>\frac{1}{2}bh=\tfrac{3\sqrt{3}}{2}\cdot\tfrac{3}{2}=\tfrac{9\sqrt{3}}{4}</math>. We would like to add this value to the sum of the areas of the other two parts of <math>\triangle PQR</math>.
 
Suppose we label the points as shown in the diagram above, where <math>C</math> is the center of the semicircle and <math>O</math> is the center of the circle tangent to <math>\overline{AB}</math>. Since <math>\angle QPR = 60^{\circ}</math>, we have <math>\angle QOR = 2\cdot 60^{\circ}=120^{\circ}</math> and <math>\triangle QOR</math> is a <math>30-30-120</math> triangle, which can be split into two <math>30-60-90</math> triangles by the altitude from <math>O</math>. Since <math>QR=3\sqrt{3},</math> we know <math>OQ=OR=\tfrac{3\sqrt{3}}{\sqrt{3}}=3</math> by <math>30-60-90</math> triangles. The area of this part of <math>\triangle PQR</math> is <math>\frac{1}{2}bh=\tfrac{3\sqrt{3}}{2}\cdot\tfrac{3}{2}=\tfrac{9\sqrt{3}}{4}</math>. We would like to add this value to the sum of the areas of the other two parts of <math>\triangle PQR</math>.
  
Line 40: Line 60:
  
 
Let <math>\angle POC = \alpha</math>. Then <math>\sin\alpha = \tfrac{4}{5}, \cos\alpha = \tfrac{3}{5}, \angle QOP = 120+\alpha,</math> and <math>\angle POR = 120-\alpha</math>. The sum of the areas of <math>\triangle QOP</math> and <math>\triangle POR</math> is <math>3\cdot 3\cdot\tfrac{1}{2}\cdot\left[\sin(120-\alpha)+\sin(120+\alpha)\right]=\tfrac{9}{2}\left[\sin(120-\alpha)+\sin(120+\alpha)\right],</math> which we will add to <math>\tfrac{9\sqrt{3}}{4}</math> to get the area of <math>\triangle PQR</math>. Observe that <cmath>\sin(120-\alpha) = \sin 120\cos\alpha-\sin\alpha\cos 120 = \tfrac{\sqrt{3}}{2}\cdot\tfrac{3}{5}-\tfrac{4}{5}\cdot\tfrac{-1}{2}=\tfrac{3\sqrt{3}}{10}+\tfrac{4}{10}=\tfrac{3\sqrt{3}+4}{10}</cmath>and similarly <math>\sin(120+\alpha)=\tfrac{3\sqrt{3}-4}{10}</math>. Adding these two gives <math>\tfrac{3\sqrt{3}}{5}</math> and multiplying that by <math>\tfrac{9}{2}</math> gets us <math>\tfrac{27\sqrt{3}}{10},</math> which we add to <math>\tfrac{9\sqrt{3}}{4}</math> to get <math>\tfrac{54\sqrt{3}+45\sqrt{3}}{20}=\tfrac{99\sqrt{3}}{20}</math>. The answer is <math>99+3+20=102+20=\boxed{\textbf{(D)} ~122}</math>
 
Let <math>\angle POC = \alpha</math>. Then <math>\sin\alpha = \tfrac{4}{5}, \cos\alpha = \tfrac{3}{5}, \angle QOP = 120+\alpha,</math> and <math>\angle POR = 120-\alpha</math>. The sum of the areas of <math>\triangle QOP</math> and <math>\triangle POR</math> is <math>3\cdot 3\cdot\tfrac{1}{2}\cdot\left[\sin(120-\alpha)+\sin(120+\alpha)\right]=\tfrac{9}{2}\left[\sin(120-\alpha)+\sin(120+\alpha)\right],</math> which we will add to <math>\tfrac{9\sqrt{3}}{4}</math> to get the area of <math>\triangle PQR</math>. Observe that <cmath>\sin(120-\alpha) = \sin 120\cos\alpha-\sin\alpha\cos 120 = \tfrac{\sqrt{3}}{2}\cdot\tfrac{3}{5}-\tfrac{4}{5}\cdot\tfrac{-1}{2}=\tfrac{3\sqrt{3}}{10}+\tfrac{4}{10}=\tfrac{3\sqrt{3}+4}{10}</cmath>and similarly <math>\sin(120+\alpha)=\tfrac{3\sqrt{3}-4}{10}</math>. Adding these two gives <math>\tfrac{3\sqrt{3}}{5}</math> and multiplying that by <math>\tfrac{9}{2}</math> gets us <math>\tfrac{27\sqrt{3}}{10},</math> which we add to <math>\tfrac{9\sqrt{3}}{4}</math> to get <math>\tfrac{54\sqrt{3}+45\sqrt{3}}{20}=\tfrac{99\sqrt{3}}{20}</math>. The answer is <math>99+3+20=102+20=\boxed{\textbf{(D)} ~122}</math>
 
==Solution 2==
 
===Diagram===
 
[[File:2021 AMC 12A Problem 24.png|center]]
 
~MRENTHUSIASM (by Geometry Expressions)
 
 
===Solution===
 
Let <math>O=\Gamma</math> be the center of the semicircle, <math>X=\Omega</math> be the center of the circle, and <math>M</math> be the midpoint of <math>\overline{QR}.</math> By the Perpendicular Chord Theorem Converse, we have <math>\overline{XM}\perp\overline{QR}</math> and <math>\overline{OM}\perp\overline{QR}.</math> Together, points <math>O, X,</math> and <math>M</math> must be collinear.
 
 
Applying the Extended Law of Sines on <math>\triangle PQR,</math> we have<cmath>XP=\frac{QR}{2\cdot\sin \angle QPR}=\frac{3\sqrt3}{2\cdot\frac{\sqrt3}{2}}=3,</cmath>in which the radius of <math>\odot \Omega</math> is <math>3.</math>
 
 
By the SAS Congruence, we have <math>\triangle QXM\cong\triangle RXM,</math> both of which are <math>30^\circ</math>-<math>60^\circ</math>-<math>90^\circ</math> triangles. By the side-length ratios, <math>RM=\frac{3\sqrt3}{2}, RX=3,</math> and <math>MX=\frac{3}{2}.</math> By the Pythagorean Theorem in <math>\triangle ORM,</math> we get <math>OM=\frac{13}{2}</math> and <math>OX=OM-XM=5.</math> By the Pythagorean Theorem on <math>\triangle OXP,</math> we obtain <math>OP=4.</math>
 
 
[[File:2021 AMC 12A Problem 24(2) (Revised).png|center]]
 
 
As shown above, we construct an altitude <math>\overline{PC}</math> of <math>\triangle PQR.</math> Since <math>\overline{PC}\perp\overline{RQ}</math> and <math>\overline{OM}\perp\overline{RQ},</math> we know that <math>\overline{PC}\parallel\overline{OM}.</math> We construct <math>D</math> on <math>\overline{PC}</math> such that <math>\overline{XD}\perp\overline{PC}.</math> Clearly, <math>MXDC</math> is a rectangle. Since <math>\angle XPD=\angle OXP</math> by alternate interior angles, we have <math>\triangle XPD\sim\triangle OXP</math> by the AA Similarity, with ratio of similitude <math>\frac{XP}{OX}=\frac 35.</math> Therefore, we get that <math>PD=\frac 95</math> and <math>PC=PD+DC=PD+MX=\frac 95 + \frac 32 = \frac{33}{10}.</math>
 
 
The area of <math>\triangle PQR</math> is<cmath>\frac12(RQ)(PC)=\frac12\left(3\sqrt3\right)\left(\frac{33}{10}\right)=\frac{99\sqrt3}{20},</cmath>and the answer is <math>99+3+20=\boxed{\textbf{(D) } 122}.</math>
 
 
~MRENTHUSIASM
 
  
 
==Video Solution by Punxsutawney Phil==
 
==Video Solution by Punxsutawney Phil==

Revision as of 19:24, 23 February 2021

Problem

Semicircle $\Gamma$ has diameter $\overline{AB}$ of length $14$. Circle $\Omega$ lies tangent to $\overline{AB}$ at a point $P$ and intersects $\Gamma$ at points $Q$ and $R$. If $QR=3\sqrt3$ and $\angle QPR=60^\circ$, then the area of $\triangle PQR$ equals $\tfrac{a\sqrt{b}}{c}$, where $a$ and $c$ are relatively prime positive integers, and $b$ is a positive integer not divisible by the square of any prime. What is $a+b+c$?

$\textbf{(A) } 110\qquad\textbf{(B) } 114\qquad\textbf{(C) } 118\qquad\textbf{(D) } 122\qquad\textbf{(E) } 126\qquad$

Solution 1

Diagram

~MRENTHUSIASM (by Geometry Expressions)

Solution

Let $O=\Gamma$ be the center of the semicircle, $X=\Omega$ be the center of the circle, and $M$ be the midpoint of $\overline{QR}.$ By the Perpendicular Chord Theorem Converse, we have $\overline{XM}\perp\overline{QR}$ and $\overline{OM}\perp\overline{QR}.$ Together, points $O, X,$ and $M$ must be collinear.

Applying the Extended Law of Sines on $\triangle PQR,$ we have\[XP=\frac{QR}{2\cdot\sin \angle QPR}=\frac{3\sqrt3}{2\cdot\frac{\sqrt3}{2}}=3,\]in which the radius of $\odot \Omega$ is $3.$

By the SAS Congruence, we have $\triangle QXM\cong\triangle RXM,$ both of which are $30^\circ$-$60^\circ$-$90^\circ$ triangles. By the side-length ratios, $RM=\frac{3\sqrt3}{2}, RX=3,$ and $MX=\frac{3}{2}.$ By the Pythagorean Theorem in $\triangle ORM,$ we get $OM=\frac{13}{2}$ and $OX=OM-XM=5.$ By the Pythagorean Theorem on $\triangle OXP,$ we obtain $OP=4.$

As shown above, we construct an altitude $\overline{PC}$ of $\triangle PQR.$ Since $\overline{PC}\perp\overline{RQ}$ and $\overline{OM}\perp\overline{RQ},$ we know that $\overline{PC}\parallel\overline{OM}.$ We construct $D$ on $\overline{PC}$ such that $\overline{XD}\perp\overline{PC}.$ Clearly, $MXDC$ is a rectangle. Since $\angle XPD=\angle OXP$ by alternate interior angles, we have $\triangle XPD\sim\triangle OXP$ by the AA Similarity, with ratio of similitude $\frac{XP}{OX}=\frac 35.$ Therefore, we get that $PD=\frac 95$ and $PC=PD+DC=PD+MX=\frac 95 + \frac 32 = \frac{33}{10}.$

The area of $\triangle PQR$ is\[\frac12(RQ)(PC)=\frac12\left(3\sqrt3\right)\left(\frac{33}{10}\right)=\frac{99\sqrt3}{20},\]and the answer is $99+3+20=\boxed{\textbf{(D) } 122}.$

~MRENTHUSIASM

Solution

Diagram

[asy] draw(circle((7,0),7)); pair A = (0, 0); pair B = (14, 0); draw(A--B); draw(circle((11,3),3)); label("$C$", (7, 0), S); label("$O$", (11, 3), E); label("$P$", (11, 0), S); pair C = (7, 0); pair O = (11, 3); pair P = (11, 0); pair Q = intersectionpoints(circle(C, 7), circle(O, 3))[1]; pair R = intersectionpoints(circle(C, 7), circle(O, 3))[0]; draw(C--O); draw(C--Q); draw(C--R); draw(Q--R); draw(O--P); draw(O--Q); draw(O--R); draw(P--Q); draw(P--R); label("$Q$", Q, N); label("$R$", R, E); [/asy]

someone pls make this asymptote code work

Solution

Suppose we label the points as shown in the diagram above, where $C$ is the center of the semicircle and $O$ is the center of the circle tangent to $\overline{AB}$. Since $\angle QPR = 60^{\circ}$, we have $\angle QOR = 2\cdot 60^{\circ}=120^{\circ}$ and $\triangle QOR$ is a $30-30-120$ triangle, which can be split into two $30-60-90$ triangles by the altitude from $O$. Since $QR=3\sqrt{3},$ we know $OQ=OR=\tfrac{3\sqrt{3}}{\sqrt{3}}=3$ by $30-60-90$ triangles. The area of this part of $\triangle PQR$ is $\frac{1}{2}bh=\tfrac{3\sqrt{3}}{2}\cdot\tfrac{3}{2}=\tfrac{9\sqrt{3}}{4}$. We would like to add this value to the sum of the areas of the other two parts of $\triangle PQR$.

To find the areas of the other two parts of $\triangle PQR$ using the $\sin$ area formula, we need the sides and included angles. Here we know the sides but what we don't know are the angles. So it seems like we will have to use an angle from another triangle and combine them with the angles we already know to find these angles easily. We know that $\angle QOR = 120^{\circ}$ and triangles $\triangle COQ$ and $\triangle COR$ are congruent as they share a side, $CQ=CR,$ and $OQ=OR$. Therefore $\angle COQ = \angle COR = 120^{\circ}$. Suppose $CO=x$. Then $3^{2}+x^{2}-6x\cos{120^{\circ}}=7^{2}$, and since $\cos{120^{\circ}}=-\tfrac{1}{2}$, this simplifies to $x^{2}+3x=7^{2}-3^{2}\rightarrow x^{2}+3x-40=0$. This factors nicely as $(x-5)(x+8)=0$, so $x=5$ as $x$ can't be $-8$. Since $CO=5, OP=3$ and $\angle OPC=90^{\circ}$, we now know that $\triangle OPC$ is a $3-4-5$ right triangle. This may be useful info for later as we might use an angle in this triangle to find the areas of the other two parts of $\triangle PQR$.

Let $\angle POC = \alpha$. Then $\sin\alpha = \tfrac{4}{5}, \cos\alpha = \tfrac{3}{5}, \angle QOP = 120+\alpha,$ and $\angle POR = 120-\alpha$. The sum of the areas of $\triangle QOP$ and $\triangle POR$ is $3\cdot 3\cdot\tfrac{1}{2}\cdot\left[\sin(120-\alpha)+\sin(120+\alpha)\right]=\tfrac{9}{2}\left[\sin(120-\alpha)+\sin(120+\alpha)\right],$ which we will add to $\tfrac{9\sqrt{3}}{4}$ to get the area of $\triangle PQR$. Observe that \[\sin(120-\alpha) = \sin 120\cos\alpha-\sin\alpha\cos 120 = \tfrac{\sqrt{3}}{2}\cdot\tfrac{3}{5}-\tfrac{4}{5}\cdot\tfrac{-1}{2}=\tfrac{3\sqrt{3}}{10}+\tfrac{4}{10}=\tfrac{3\sqrt{3}+4}{10}\]and similarly $\sin(120+\alpha)=\tfrac{3\sqrt{3}-4}{10}$. Adding these two gives $\tfrac{3\sqrt{3}}{5}$ and multiplying that by $\tfrac{9}{2}$ gets us $\tfrac{27\sqrt{3}}{10},$ which we add to $\tfrac{9\sqrt{3}}{4}$ to get $\tfrac{54\sqrt{3}+45\sqrt{3}}{20}=\tfrac{99\sqrt{3}}{20}$. The answer is $99+3+20=102+20=\boxed{\textbf{(D)} ~122}$

Video Solution by Punxsutawney Phil

https://youtube.com/watch?v=cEHF5iWMe9c

Video Solution by OmegaLearn (Similar Triangles, Law of Sines, Law of Cosines )

https://youtu.be/j965v6ahUZk

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png