Difference between revisions of "2018 AMC 10A Problems/Problem 10"

(Solution 3)
(Solution 3)
Line 24: Line 24:
  
 
==Solution 3==
 
==Solution 3==
 +
hi
  
 
==Video Solution (HOW TO THINK CREATIVELY!)==
 
==Video Solution (HOW TO THINK CREATIVELY!)==

Revision as of 11:26, 19 June 2024

Problem

Suppose that real number $x$ satisfies \[\sqrt{49-x^2}-\sqrt{25-x^2}=3\]What is the value of $\sqrt{49-x^2}+\sqrt{25-x^2}$?

$\textbf{(A) }8\qquad \textbf{(B) }\sqrt{33}+8\qquad \textbf{(C) }9\qquad \textbf{(D) }2\sqrt{10}+4\qquad \textbf{(E) }12\qquad$

Solution 1

We let $a=\sqrt{49-x^2}+\sqrt{25-x^2}$; in other words, we want to find $a$. We know that $a\cdot3=\left(\sqrt{49-x^2}+\sqrt{25-x^2}\right)\cdot\left(\sqrt{49-x^2}-\sqrt{25-x^2}\right)=\left(\sqrt{49-x^2}\right)^2-\left(\sqrt{25-x^2}\right)^2=\left(49-x^2\right)-\left(25-x^2\right)=24.$ Thus, $a=\boxed{8}$.

~Technodoggo

Solution 2

Let $a = \sqrt{49-x^2}$, and $b = \sqrt{25-x^2}$. Solving for the constants in terms of x, a , and b, we get $a^2 + x^2 = 49$, and $b^2 + x^2 = 25$. Subtracting the second equation from the first gives us $a^2 - b^2 = 24$. Difference of squares gives us $(a+b)(a-b) = 24$. Since we want to find $a+b = \sqrt{49-x^2}+\sqrt{25-x^2}$, and we know $a-b = 3$, we get $3(a+b) = 24$, so $a+b = \boxed{\textbf{(A) }8}$


~idk12345678

Solution 3

hi

Video Solution (HOW TO THINK CREATIVELY!)

https://youtu.be/P-atxiiTw2I

~Education, the Study of Everything



Video Solutions

Video Solution 1

https://youtu.be/ba6w1OhXqOQ?t=1403

~ pi_is_3.14

Video Solution 2

https://youtu.be/zQG70XKAdeA ~ North America Math Contest Go Go Go

Video Solution 3

https://youtu.be/ZiZVIMmo260

Video Solution 4

https://youtu.be/5cA87rbzFdw

~savannahsolver

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions