Difference between revisions of "2002 AMC 12A Problems/Problem 6"

m
Line 1: Line 1:
{{duplicate|[[2002 AMC 12A Problems|2009 AMC 12A #6]] and [[2002 AMC 10A Problems|2009 AMC 10A #4]]}}
+
{{duplicate|[[2002 AMC 12A Problems|2002 AMC 12A #6]] and [[2002 AMC 10A Problems|2002 AMC 10A #4]]}}
  
 
==Problem==
 
==Problem==

Revision as of 14:32, 18 February 2009

The following problem is from both the 2002 AMC 12A #6 and 2002 AMC 10A #4, so both problems redirect to this page.

Problem

For how many positive integers $m$ does there exist at least one positive integer n such that $m \cdot n \le m + n$?

$\mathrm{(A) \ } 4\qquad \mathrm{(B) \ } 6\qquad \mathrm{(C) \ } 9\qquad \mathrm{(D) \ } 12\qquad \mathrm{(E) \ }$ infinitely many


Solution

For any $m$ we can pick $n=1$, we get $m \cdot 1 \le m + 1$, therefore the answer is $\boxed{\text{(E) infinitely many}}$.

See Also

2002 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2002 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions