Difference between revisions of "2002 AMC 12B Problems/Problem 11"

(s)
 
Line 1: Line 1:
 +
{{duplicate|[[2002 AMC 12B Problems|2002 AMC 12B #11]] and [[2002 AMC 10B Problems|2002 AMC 10B #15]]}}
 
== Problem ==
 
== Problem ==
 
The positive integers <math>A, B, A-B, </math> and <math>A+B</math> are all prime numbers. The sum of these four primes is
 
The positive integers <math>A, B, A-B, </math> and <math>A+B</math> are all prime numbers. The sum of these four primes is
Line 9: Line 10:
  
 
== Solution ==
 
== Solution ==
Since <math>A-B</math> and <math>A+B</math> must have the same [[parity]], and since there is only one even prime number, it follows that <math>A-B</math> and <math>A+B</math> are both odd. Thus one of <math>A, B</math> is odd and the other even. Since <math>A+B > A > A-B > 2</math>, it follows that <math>A</math> (as a prime greater than <math>2</math>) is odd. Thus <math>B = 2</math>, and <math>A-2, A, A+2</math> are consecutive odd primes. At least one of <math>A-2, A, A+2</math> is divisible by <math>3</math>, from which it follows that <math>A-2 = 3</math> and <math>A = 5</math>. The sum of these numbers is thus <math>17</math>, which is prime <math>\mathrm{(E)}</math>.  
+
Since <math>A-B</math> and <math>A+B</math> must have the same [[parity]], and since there is only one even prime number, it follows that <math>A-B</math> and <math>A+B</math> are both odd. Thus one of <math>A, B</math> is odd and the other even. Since <math>A+B > A > A-B > 2</math>, it follows that <math>A</math> (as a prime greater than <math>2</math>) is odd. Thus <math>B = 2</math>, and <math>A-2, A, A+2</math> are consecutive odd primes. At least one of <math>A-2, A, A+2</math> is divisible by <math>3</math>, from which it follows that <math>A-2 = 3</math> and <math>A = 5</math>. The sum of these numbers is thus <math>17</math>, a prime, so the answer is <math>\boxed{\mathrm{(E)}\ \text{prime}}</math>.  
  
 
== See also ==
 
== See also ==
 +
{{AMC10 box|year=2002|ab=B|num-b=14|num-a=16}}
 
{{AMC12 box|year=2002|ab=B|num-b=10|num-a=12}}
 
{{AMC12 box|year=2002|ab=B|num-b=10|num-a=12}}
  
 
[[Category:Introductory Number Theory Problems]]
 
[[Category:Introductory Number Theory Problems]]

Revision as of 17:14, 28 July 2011

The following problem is from both the 2002 AMC 12B #11 and 2002 AMC 10B #15, so both problems redirect to this page.

Problem

The positive integers $A, B, A-B,$ and $A+B$ are all prime numbers. The sum of these four primes is

$\mathrm{(A)}\ \mathrm{even} \qquad\mathrm{(B)}\ \mathrm{divisible\ by\ }3 \qquad\mathrm{(C)}\ \mathrm{divisible\ by\ }5 \qquad\mathrm{(D)}\ \mathrm{divisible\ by\ }7 \qquad\mathrm{(E)}\ \mathrm{prime}$

Solution

Since $A-B$ and $A+B$ must have the same parity, and since there is only one even prime number, it follows that $A-B$ and $A+B$ are both odd. Thus one of $A, B$ is odd and the other even. Since $A+B > A > A-B > 2$, it follows that $A$ (as a prime greater than $2$) is odd. Thus $B = 2$, and $A-2, A, A+2$ are consecutive odd primes. At least one of $A-2, A, A+2$ is divisible by $3$, from which it follows that $A-2 = 3$ and $A = 5$. The sum of these numbers is thus $17$, a prime, so the answer is $\boxed{\mathrm{(E)}\ \text{prime}}$.

See also

2002 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2002 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions