Difference between revisions of "2017 AMC 10B Problems/Problem 4"

m
(Solution)
Line 7: Line 7:
 
Rearranging, we find <math>3x+y=-2x+6y</math>, or <math>5x=5y\implies x=y</math>
 
Rearranging, we find <math>3x+y=-2x+6y</math>, or <math>5x=5y\implies x=y</math>
 
Substituting, we can convert the second equation into <math>\frac{x+3x}{3x-x}=\frac{4x}{2x}=\boxed{\textbf{(D)}\ 2}</math>
 
Substituting, we can convert the second equation into <math>\frac{x+3x}{3x-x}=\frac{4x}{2x}=\boxed{\textbf{(D)}\ 2}</math>
 +
 +
 +
==Solution(Cheap)==
 +
Substituting each <math>x</math> and <math>y</math> with <math>1</math>, we see that the given equation holds true, as <math>\frac{3(1)+1}{1-3(1)} = -2</math>. Thus, <math>\frac{x+3y}{3x-y}=\boxed{\textbf{(D)}\ 2}</math>
 +
Solution by sp1729
 +
  
 
{{AMC10 box|year=2017|ab=B|num-b=3|num-a=5}}
 
{{AMC10 box|year=2017|ab=B|num-b=3|num-a=5}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 20:00, 16 February 2017

Problem

Supposed that $x$ and $y$ are nonzero real numbers such that $\frac{3x+y}{x-3y}=-2$. What is the value of $\frac{x+3y}{3x-y}$?

$\textbf{(A)}\ -3\qquad\textbf{(B)}\ -1\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ 3$

Solution

Rearranging, we find $3x+y=-2x+6y$, or $5x=5y\implies x=y$ Substituting, we can convert the second equation into $\frac{x+3x}{3x-x}=\frac{4x}{2x}=\boxed{\textbf{(D)}\ 2}$


Solution(Cheap)

Substituting each $x$ and $y$ with $1$, we see that the given equation holds true, as $\frac{3(1)+1}{1-3(1)} = -2$. Thus, $\frac{x+3y}{3x-y}=\boxed{\textbf{(D)}\ 2}$ Solution by sp1729


2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png