Difference between revisions of "2017 AMC 10B Problems/Problem 24"
m (→Solution 2) |
|||
Line 9: | Line 9: | ||
==Solution 2== | ==Solution 2== | ||
WLOG, let the centroid of <math>\triangle ABC</math> be <math>G = (-1,-1)</math>. Then, one of the vertices must be the other curve of the hyperbola. WLOG, let <math>A = (1,1)</math>. Then, point <math>B</math> must be the reflection of <math>C</math> across the line <math>y=x</math>, so let <math>B = (a,1/a)</math> and <math>C=(1/a,a)</math>, where <math>a <-1</math>. Because <math>G</math> is the centroid, the average of the <math>x</math>-coordinates of the vertices of the triangle is <math>-1</math>. So we know that <math>a + 1/a+ 1 = -3</math>. Multiplying by <math>a</math> and solving gives us <math>a=-2-\sqrt{3}</math>. So <math>B=(-2-\sqrt{3},-2+\sqrt{3})</math> and <math>C=(-2+\sqrt{3},-2-\sqrt{3})</math>. So <math>BC=2\sqrt{6}</math>, and finding the square of the area gives us <math>\boxed{\textbf{(C) } 108}</math>. | WLOG, let the centroid of <math>\triangle ABC</math> be <math>G = (-1,-1)</math>. Then, one of the vertices must be the other curve of the hyperbola. WLOG, let <math>A = (1,1)</math>. Then, point <math>B</math> must be the reflection of <math>C</math> across the line <math>y=x</math>, so let <math>B = (a,1/a)</math> and <math>C=(1/a,a)</math>, where <math>a <-1</math>. Because <math>G</math> is the centroid, the average of the <math>x</math>-coordinates of the vertices of the triangle is <math>-1</math>. So we know that <math>a + 1/a+ 1 = -3</math>. Multiplying by <math>a</math> and solving gives us <math>a=-2-\sqrt{3}</math>. So <math>B=(-2-\sqrt{3},-2+\sqrt{3})</math> and <math>C=(-2+\sqrt{3},-2-\sqrt{3})</math>. So <math>BC=2\sqrt{6}</math>, and finding the square of the area gives us <math>\boxed{\textbf{(C) } 108}</math>. | ||
+ | |||
+ | ==Solution 3== | ||
+ | WLOG, let a vertex <math>A</math> of equilateral triangle <math>ABC</math> be at <math>(-1,-1)</math> on hyperbola <math>xy=1</math>. | ||
+ | |||
+ | We are given that the vertex of the hyperbola is the centroid of the triangle. Hence, WLOG, the centroid of the triangle is at <math>(1,1)</math>. Mark the centroid to be point <math>D</math>. | ||
+ | |||
+ | The length of <math>AD=\sqrt{(1-(-1))^2+(1-(-1))^2\implies \sqrt{8}\implies 2\sqrt{2}</math>. | ||
+ | |||
+ | Now, using the information that <math>AD</math> is <math>\frac{2}{3}</math> the height of equilateral triangle <math>ABC</math>(centroid), we find that the height of equilateral triangle <math>ABC</math> is <math>3\sqrt{2}</math> | ||
+ | |||
+ | Hence, since the height of triangle <math>ABC=3\sqrt{2}</math>, its base is <math>=2sqrt{6}</math> | ||
+ | |||
+ | Using the formula for the area of an equilateral triangle... | ||
+ | |||
+ | <math>\frac{2\sqrt{6}}^2}{\sqrt{3}}{4}\implies \frac{24\sqrt{3}}{4}\implies 6\sqrt{3}</math> | ||
+ | |||
+ | Hence, the area squares <math>={6\sqrt{3}}^2 \implies 108 \implies \boxed{\textbf{(C) } 108</math> | ||
==See Also== | ==See Also== | ||
{{AMC10 box|year=2017|ab=B|num-b=23|num-a=25}} | {{AMC10 box|year=2017|ab=B|num-b=23|num-a=25}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 18:45, 14 June 2017
Problem 24
The vertices of an equilateral triangle lie on the hyperbola , and a vertex of this hyperbola is the centroid of the triangle. What is the square of the area of the triangle?
Solution
WLOG, let the centroid of be . The centroid of an equilateral triangle is the same as the circumcenter. It follows that the circumcircle must hit the graph exactly three times. Therefore, , so , so since is isosceles and , then by Law of Cosines, . Therefore, the area of the triangle is , so the square of the area of the triangle is .
Solution 2
WLOG, let the centroid of be . Then, one of the vertices must be the other curve of the hyperbola. WLOG, let . Then, point must be the reflection of across the line , so let and , where . Because is the centroid, the average of the -coordinates of the vertices of the triangle is . So we know that . Multiplying by and solving gives us . So and . So , and finding the square of the area gives us .
Solution 3
WLOG, let a vertex of equilateral triangle be at on hyperbola .
We are given that the vertex of the hyperbola is the centroid of the triangle. Hence, WLOG, the centroid of the triangle is at . Mark the centroid to be point .
The length of $AD=\sqrt{(1-(-1))^2+(1-(-1))^2\implies \sqrt{8}\implies 2\sqrt{2}$ (Error compiling LaTeX. Unknown error_msg).
Now, using the information that is the height of equilateral triangle (centroid), we find that the height of equilateral triangle is
Hence, since the height of triangle , its base is
Using the formula for the area of an equilateral triangle...
$\frac{2\sqrt{6}}^2}{\sqrt{3}}{4}\implies \frac{24\sqrt{3}}{4}\implies 6\sqrt{3}$ (Error compiling LaTeX. Unknown error_msg)
Hence, the area squares $={6\sqrt{3}}^2 \implies 108 \implies \boxed{\textbf{(C) } 108$ (Error compiling LaTeX. Unknown error_msg)
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 23 |
Followed by Problem 25 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.