Difference between revisions of "2017 AMC 10B Problems/Problem 22"
Abhinav2k3 (talk | contribs) (→Solution) |
Abhinav2k3 (talk | contribs) (→Solution) |
||
Line 16: | Line 16: | ||
===Solution 4=== | ===Solution 4=== | ||
− | |||
Let's call the center of the circle that segment <math>AB</math> is the diameter of, <math>O</math>. Note that <math>\triangle ODE</math> is an isosceles right triangle. Solving for side <math>OE</math>, using the Pythagorean theorem, we find it to be <math>5\sqrt{2}</math>. Calling the point where segment <math>OE</math> intersects circle <math>O</math>, the point <math>I</math>, segment <math>IE</math> would be <math>5\sqrt{2}-2</math>. Also, noting that <math>\triangle ADE</math> is a right triangle, we solve for side <math>AE</math>, using the Pythagorean Theorem, and get <math>\sqrt{74}</math>. Using Power of Point on point <math>E</math>, we can solve for <math>CE</math>. We can subtract <math>CE</math> from <math>AE</math> to find <math>AC</math> and then solve for <math>CB</math> using Pythagorean theorem once more. | Let's call the center of the circle that segment <math>AB</math> is the diameter of, <math>O</math>. Note that <math>\triangle ODE</math> is an isosceles right triangle. Solving for side <math>OE</math>, using the Pythagorean theorem, we find it to be <math>5\sqrt{2}</math>. Calling the point where segment <math>OE</math> intersects circle <math>O</math>, the point <math>I</math>, segment <math>IE</math> would be <math>5\sqrt{2}-2</math>. Also, noting that <math>\triangle ADE</math> is a right triangle, we solve for side <math>AE</math>, using the Pythagorean Theorem, and get <math>\sqrt{74}</math>. Using Power of Point on point <math>E</math>, we can solve for <math>CE</math>. We can subtract <math>CE</math> from <math>AE</math> to find <math>AC</math> and then solve for <math>CB</math> using Pythagorean theorem once more. | ||
Revision as of 14:28, 5 September 2017
Contents
Problem
The diameter of a circle of radius is extended to a point outside the circle so that . Point is chosen so that and line is perpendicular to line . Segment intersects the circle at a point between and . What is the area of ?
Solution
Solution 1
Notice that and are right triangles. Then . , so . We also find that , and thus the area of is .
Solution 2
We note that by similarity. Also, since the area of and , , so the area of .
Solution 3
As stated before, note that . By similarity, we note that is equivalent to . We set to and to . By the Pythagorean Theorem, = 4^2. Combining, . We can add and divide to get . We square root and rearrange to get . We know that the legs of the triangle are and . Mulitplying by 7 and 5 eventually gives us x. We divide this by 2, since is the formula for a triangle. This gives us .
Solution 4
Let's call the center of the circle that segment is the diameter of, . Note that is an isosceles right triangle. Solving for side , using the Pythagorean theorem, we find it to be . Calling the point where segment intersects circle , the point , segment would be . Also, noting that is a right triangle, we solve for side , using the Pythagorean Theorem, and get . Using Power of Point on point , we can solve for . We can subtract from to find and then solve for using Pythagorean theorem once more.
= (Diameter of circle + ) = =
= - =
Now to solve for :
- = + = =
Note that is a right triangle because the hypotenuse is the diameter of the circle. Solving for area using the bases and , we get the area of triangle to be .
See Also
2017 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.