Difference between revisions of "2018 AMC 10A Problems/Problem 20"

(Created page with "A scanning code consists of a <math>7 \times 7</math> grid of squares, with some of its squares colored black and the rest colored white. There must be at least one square of...")
 
(Added solution -- please add a more rigorous one!)
Line 2: Line 2:
  
 
<math>\textbf{(A)} \text{ 510} \qquad \textbf{(B)} \text{ 1022} \qquad \textbf{(C)} \text{ 8190} \qquad \textbf{(D)} \text{ 8192} \qquad \textbf{(E)} \text{ 65,534}</math>
 
<math>\textbf{(A)} \text{ 510} \qquad \textbf{(B)} \text{ 1022} \qquad \textbf{(C)} \text{ 8190} \qquad \textbf{(D)} \text{ 8192} \qquad \textbf{(E)} \text{ 65,534}</math>
 +
 +
==Solution==
 +
 +
Draw a <math>7 \times 7</math> square.
 +
 +
<math> \begin{tabular}{|c|c|c|c|c|c|c|}
 +
\hline
 +
a & b & c & d & c & b & a \
 +
\hline
 +
b & e & f & g & f & e & b \
 +
\hline
 +
c & f & h & i & h & f & c \
 +
\hline
 +
d & g & i & j & i & g & d \
 +
\hline
 +
c & f & h & i & h & f & c \
 +
\hline
 +
b & e & f & g & f & e & b \
 +
\hline
 +
a & b & c & d & c & b & a \
 +
\hline
 +
\end{tabular} </math>
 +
 +
There are two choices for each letter, for a total of <math>2^{10} = 1024</math> codes. Two codes must be subtracted for an answer of <math>\fbox{\textbf{(B)} \text{ 1022}}</math>
 +
      ~Nosysnow
 +
== See Also ==
 +
 +
{{AMC10 box|year=2018|ab=A|num-b=2|num-a=4}}
 +
{{MAA Notice}}

Revision as of 15:44, 8 February 2018

A scanning code consists of a $7 \times 7$ grid of squares, with some of its squares colored black and the rest colored white. There must be at least one square of each color in this grid of $49$ squares. A scanning code is called [i]symmetric[/i] if its look does not change when the entire square is rotated by a multiple of $90 ^{\circ}$ counterclockwise around its center, nor when it is reflected across a line joining opposite corners or a line joining midpoints of opposite sides. What is the total number of possible symmetric scanning codes?

$\textbf{(A)} \text{ 510} \qquad \textbf{(B)} \text{ 1022} \qquad \textbf{(C)} \text{ 8190} \qquad \textbf{(D)} \text{ 8192} \qquad \textbf{(E)} \text{ 65,534}$

Solution

Draw a $7 \times 7$ square.

$\begin{tabular}{|c|c|c|c|c|c|c|} \hline a & b & c & d & c & b & a \\ \hline b & e & f & g & f & e & b \\ \hline c & f & h & i & h & f & c \\ \hline d & g & i & j & i & g & d \\ \hline c & f & h & i & h & f & c \\ \hline b & e & f & g & f & e & b \\ \hline a & b & c & d & c & b & a \\ \hline \end{tabular}$

There are two choices for each letter, for a total of $2^{10} = 1024$ codes. Two codes must be subtracted for an answer of $\fbox{\textbf{(B)} \text{ 1022}}$

     ~Nosysnow

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png