Difference between revisions of "2018 AMC 10A Problems/Problem 10"
(→Solution 3: unneeded stuff/signature) |
m |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Suppose that real number <math>x</math> satisfies <cmath>\sqrt{49-x^2}-\sqrt{25-x^2}=3</cmath> | + | Suppose that real number <math>x</math> satisfies <cmath>\sqrt{49-x^2}-\sqrt{25-x^2}=3</cmath>What is the value of <math>\sqrt{49-x^2}+\sqrt{25-x^2}</math>? |
<math> | <math> |
Revision as of 18:10, 11 February 2018
Problem
Suppose that real number satisfies What is the value of ?
Solutions
Solution 1
In order to get rid of the square roots, we multiply by the conjugate. Its value is the solution.The terms cancel nicely.
Given that = 3,
Solution by PancakeMonster2004, explanations added by a1b2.
Solution 2
Let , and let . Then . Substituting, we get . Rearranging, we get . Squaring both sides and solving, we get and . Adding, we get that the answer is
Solution 3
Put the equations to one side. can be changed into .
We can square both sides, getting us
That simplifies out to Dividing both sides by 6 gets us .
Following that, we can square both sides again, resulting in the equation . Simplifying that, we get .
Substituting into the equation , we get . Immediately, we simplify into . The two numbers inside the square roots are simplified to be and , so you add them up:
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |