Difference between revisions of "2018 AMC 10A Problems/Problem 10"
m |
|||
Line 35: | Line 35: | ||
Substituting into the equation <math>\sqrt{49-x^2}+\sqrt{25-x^2}</math>, we get <math>\sqrt{49-\frac{75}{4}}+\sqrt{25-\frac{75}{4}}</math>. Immediately, we simplify into <math>\sqrt{\frac{121}{4}}+\sqrt{\frac{25}{4}}</math>. The two numbers inside the square roots are simplified to be <math>\frac{11}{2}</math> and <math>\frac{5}{2}</math>, so you add them up: <math>\frac{11}{2}+\frac{5}{2}=\boxed{\textbf{(A) 8}}</math> | Substituting into the equation <math>\sqrt{49-x^2}+\sqrt{25-x^2}</math>, we get <math>\sqrt{49-\frac{75}{4}}+\sqrt{25-\frac{75}{4}}</math>. Immediately, we simplify into <math>\sqrt{\frac{121}{4}}+\sqrt{\frac{25}{4}}</math>. The two numbers inside the square roots are simplified to be <math>\frac{11}{2}</math> and <math>\frac{5}{2}</math>, so you add them up: <math>\frac{11}{2}+\frac{5}{2}=\boxed{\textbf{(A) 8}}</math> | ||
+ | ===Solution 4 (Geometric Interpretation)=== | ||
+ | |||
+ | Draw a right triangle <math>ABC</math> with a hypotenuse <math>AC</math> of length <math>7</math> and leg <math>AB</math> of length <math>x</math>. Draw <math>D</math> on <math>BC</math> such that <math>AD=5</math>. Note that <math>BC=\sqrt{49-x^2}</math> and <math>BD=\sqrt{25-x^2}</math>. Thus, from the given equation, <math>BC-BD=DC=3</math>. Using Law of Cosines on triangle <math>ADC</math>, we see that <math>\angle{ADC}=120^{\circ}</math> so <math>\angle{ADB}=60^{\circ}</math>. Since <math>ADB</math> is a <math>30-60-90</math> triangle, <math>\sqrt{25-x^2}=BD=\frac{5}{2}</math> and <math>\sqrt{49-x^2}=\frac{5}{2}+3=\frac{11}{2}</math>. Finally, <math>\sqrt{49-x^2}+\sqrt{25-x^2}=\frac{5}{2}+\frac{11}{2}=\boxed{\textbf{(A)~8}}</math> ~anser | ||
{{AMC10 box|year=2018|ab=A|num-b=9|after=Problem 11}} | {{AMC10 box|year=2018|ab=A|num-b=9|after=Problem 11}} |
Revision as of 18:22, 11 February 2018
Contents
[hide]Problem
Suppose that real number satisfies What is the value of ?
Solutions
Solution 1
In order to get rid of the square roots, we multiply by the conjugate. Its value is the solution.The terms cancel nicely.
Given that = 3,
Solution by PancakeMonster2004, explanations added by a1b2.
Solution 2
Let , and let . Then . Substituting, we get . Rearranging, we get . Squaring both sides and solving, we get and . Adding, we get that the answer is
Solution 3
Put the equations to one side. can be changed into .
We can square both sides, getting us
That simplifies out to Dividing both sides by 6 gets us .
Following that, we can square both sides again, resulting in the equation . Simplifying that, we get .
Substituting into the equation , we get . Immediately, we simplify into . The two numbers inside the square roots are simplified to be and , so you add them up:
Solution 4 (Geometric Interpretation)
Draw a right triangle with a hypotenuse of length and leg of length . Draw on such that . Note that and . Thus, from the given equation, . Using Law of Cosines on triangle , we see that so . Since is a triangle, and . Finally, ~anser
2018 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |