2017 AMC 10B Problems/Problem 19

Revision as of 12:25, 16 February 2017 by Thedoge (talk | contribs) (Solution)

Problem

Let $ABC$ be an equilateral triangle. Extend side $\overline{AB}$ beyond $B$ to a point $B'$ so that $BB'=3AB$. Similarly, extend side $\overline{BC}$ beyond $C$ to a point $C'$ so that $CC'=3BC$, and extend side $\overline{CA}$ beyond $A$ to a point $A'$ so that $AA'=3CA$. What is the ratio of the area of $\triangle A'B'C'$ to the area of $\triangle ABC$?

$\textbf{(A)}\ 9:1\qquad\textbf{(B)}\ 16:1\qquad\textbf{(C)}\ 25:1\qquad\textbf{(D)}\ 36:1\qquad\textbf{(E)}\ 37:1$

Solution

Note that by symmetry, $\triangle A'B'C'$ is also equilateral. Therefore, we only need to find one of the sides of $A'B'C'$ to determine the area ratio. WLOG, let $AB = BC = CA = 1$. Therefore, $BB' = 3$ and $BC' = 4$. Also, $\angle B'BC' = 120^{\circ}$, so by the Law of Cosines, $B'C' = \sqrt{37}$. Therefore, the answer is $(\sqrt{37})^2 : 1^2 = \boxed{\textbf{(E) } 37 : 1}$

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png