2021 AMC 12A Problems/Problem 25
Contents
Problem
Let denote the number of positive integers that divide , including and . For example, and . (This function is known as the divisor function.) LetThere is a unique positive integer such that for all positive integers . What is the sum of the digits of
Solution
Start off with the number 1. Multiply 1 by 2. When you multiply 1 by 2, you double the number of divisors and you divide it by . Multiply 2 by 2. When you multiply 2 by 2, you triple and then halve the number of divisors. You must not forget to divide it by again to get that function. Keep up multiplying by 2 until it starts to decrease. Keep on multiplying by 3 until it starts to decrease. Keep on multiplying by 5 until it starts to decrease. Keep on multiplying by 7 until it starts to decrease. You cannot multiply by 11 because first multiplication automatically causes a decrease. This is like the computer science algorithms. ~Lopkiloinm
Note
See problem 1.
See also
2021 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 24 |
Followed by Last problem |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.