2018 AMC 10A Problems/Problem 15

Revision as of 18:36, 19 November 2022 by Eashanshetty (talk | contribs) (Video Solution 1)

Problem

Two circles of radius $5$ are externally tangent to each other and are internally tangent to a circle of radius $13$ at points $A$ and $B$, as shown in the diagram. The distance $AB$ can be written in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. What is $m+n$?

[asy] draw(circle((0,0),13)); draw(circle((5,-6.2),5)); draw(circle((-5,-6.2),5)); label("$B$", (9.5,-9.5), S); label("$A$", (-9.5,-9.5), S); [/asy]

$\textbf{(A) }   21   \qquad    \textbf{(B) }  29   \qquad    \textbf{(C) }  58   \qquad   \textbf{(D) } 69 \qquad  \textbf{(E) }   93$

Solution

[asy] draw(circle((0,0),13)); draw(circle((5,-6.25),5)); draw(circle((-5,-6.25),5)); label("$A$", (-8.125,-10.15), S); label("$B$", (8.125,-10.15), S); draw((0,0)--(-8.125,-10.15)); draw((0,0)--(8.125,-10.15)); draw((-5,-6.25)--(5,-6.25)); draw((-8.125,-10.15)--(8.125,-10.15)); label("$X$", (0,0), N); label("$Y$", (-5,-6.25),NW); label("$Z$", (5,-6.25),NE); [/asy]

Let the center of the surrounding circle be $X$. The circle that is tangent at point $A$ will have point $Y$ as the center. Similarly, the circle that is tangent at point $B$ will have point $Z$ as the center. Connect $AB$, $YZ$, $XA$, and $XB$. Now observe that $\triangle XYZ$ is similar to $\triangle XAB$ by SAS.

Writing out the ratios, we get \[\frac{XY}{XA}=\frac{YZ}{AB} \Rightarrow \frac{13-5}{13}=\frac{5+5}{AB} \Rightarrow \frac{8}{13}=\frac{10}{AB} \Rightarrow AB=\frac{65}{4}.\] Therefore, our answer is $65+4= \boxed{\textbf{(D) } 69}$.

Video Solution 1

https://youtu.be/HJALwsbHZXc

- Whiz

https://www.youtube.com/watch?v=llMgyOkjNgU&list=PL-27w0UNlunxDTyowGrnvo_T7z92OCvpv&index=3 - amshah

Video Solution 2

https://youtu.be/NsQbhYfGh1Q?t=1328

~ pi_is_3.14

See Also

2018 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png