1985 AHSME Problems

Revision as of 22:21, 2 April 2018 by Hapaxoromenon (talk | contribs) (Fixed Problem 10)

Problem 1

If $2x+1=8$, then $4x+1=$

$\mathrm{(A)\ } 15 \qquad \mathrm{(B) \ }16 \qquad \mathrm{(C) \  } 17 \qquad \mathrm{(D) \  } 18 \qquad \mathrm{(E) \  }19$

Solution

Problem 2

In an arcade game, the "monster" is the shaded sector of a circle of radius $1$ cm, as shown in the figure. The missing piece (the mouth) has central angle $60^\circ$. What is the perimeter of the monster in cm?

[asy] size(100); defaultpen(linewidth(0.7)); filldraw(Arc(origin,1,30,330)--dir(330)--origin--dir(30)--cycle, yellow, black); label("1", (sqrt(3)/4, 1/4), NW); label("$60^\circ$", (1,0));[/asy]

$\mathrm{(A)\ } \pi+2 \qquad \mathrm{(B) \ }2\pi \qquad \mathrm{(C) \  } \frac{5}{3}\pi \qquad \mathrm{(D) \  } \frac{5}{6}\pi+2 \qquad \mathrm{(E) \  }\frac{5}{3}\pi+2$

Solution

Problem 3

In right $\triangle ABC$ with legs $5$ and $12$, arcs of circles are drawn, one with center $A$ and radius $12$, the other with center $B$ and radius $5$. They intersect the hypotenuse in $M$ and $N$. Then $MN$ has length:

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, B=(12,7), C=(12,0), M=12*dir(A--B), N=B+B.y*dir(B--A); real r=degrees(B); draw(A--B--C--cycle^^Arc(A,12,0,r)^^Arc(B,B.y,180+r,270)); pair point=incenter(A,B,C); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$M$", M, dir(point--M)); label("$N$", N, dir(point--N)); label("$12$", (6,0), S); label("$5$", (12,3.5), E);[/asy]

$\mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }\frac{13}{5} \qquad \mathrm{(C) \  } 3 \qquad \mathrm{(D) \  } 4 \qquad \mathrm{(E) \  }\frac{24}{5}$

Solution

Problem 4

A large bag of coins contains pennies, dimes, and quarters. There are twice as many dimes as pennies and three times as many quarters as dimes. An amount of money which could be in the bag is

$\mathrm{(A)\ } $306 \qquad \mathrm{(B) \ }  $333 \qquad \mathrm{(C)\ } $342 \qquad \mathrm{(D) \  }  $348 \qquad \mathrm{(E) \  }  $360$

Solution

Problem 5

Which terms must be removed from the sum

$\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}+\frac{1}{10}+\frac{1}{12}$

if the sum of the remaining terms is to equal $1$?

$\mathrm{(A)\ } \frac{1}{4}\text{ and }\frac{1}{8} \qquad \mathrm{(B) \ }\frac{1}{4}\text{ and }\frac{1}{12} \qquad \mathrm{(C) \  } \frac{1}{8}\text{ and }\frac{1}{12} \qquad \mathrm{(D) \  } \frac{1}{6}\text{ and }\frac{1}{10} \qquad \mathrm{(E) \  }\frac{1}{8}\text{ and }\frac{1}{10}$

Solution

Problem 6

One student in a class of boys and girls is chosen to represent the class. Each student is equally likely to be chosen and the probability that a boy is chosen is $\frac{2}{3}$ of the probability that a girl is chosen. The ratio of the number of boys to the total number of boys and girls is

$\mathrm{(A)\ } \frac{1}{3} \qquad \mathrm{(B) \ }\frac{2}{5} \qquad \mathrm{(C) \  } \frac{1}{2} \qquad \mathrm{(D) \  } \frac{3}{5} \qquad \mathrm{(E) \  }\frac{2}{3}$

Solution

Problem 7

In some computer languages (such as APL), when there are no parentheses in an algebraic expression, the operations are grouped from right to left. Thus, $a\times b-c$ in such languages means the same as $a(b-c)$ in ordinary algebraic notation. If $a\div b-c+d$ is evaluated in such a language, the result in ordinary algebraic notation would be

$\mathrm{(A)\ } \frac{a}{b-c+d} \qquad \mathrm{(B) \ }\frac{a}{b-c-d} \qquad \mathrm{(C) \  } \frac{d+c-b}{a} \qquad \mathrm{(D) \  } \frac{a}{b-c+d} \qquad \mathrm{(E) \  }\frac{a}{b-c-d}$

Solution

Problem 8

Let $a, a', b,$ and $b'$ be real numbers with $a$ and $a'$ nonzero. The solution to $ax+b=0$ is less than the solution to $a'x+b'=0$ if and only if

$\mathrm{(A)\ } a'b<ab' \qquad \mathrm{(B) \ }ab'<a'b \qquad \mathrm{(C) \  } ab<a'b' \qquad \mathrm{(D) \  } \frac{b}{a}<\frac{b'}{a'} \qquad$

$\mathrm{(E) \  }\frac{b'}{a'}<\frac{b}{a}$

Solution

Problem 9

The odd positive integers $1, 3, 5, 7, \cdots$, are arranged into five columns continuing with the pattern shown on the right. Counting from the left, the column in which $1985$ appears in is the

[asy] int i,j; for(i=0; i<4; i=i+1) { label(string(16*i+1), (2*1,-2*i)); label(string(16*i+3), (2*2,-2*i)); label(string(16*i+5), (2*3,-2*i)); label(string(16*i+7), (2*4,-2*i)); } for(i=0; i<3; i=i+1) { for(j=0; j<4; j=j+1) { label(string(16*i+15-2*j), (2*j,-2*i-1)); }} dot((0,-7)^^(0,-9)^^(2*4,-8)^^(2*4,-10)); for(i=-10; i<-6; i=i+1) { for(j=1; j<4; j=j+1) { dot((2*j,i)); }}[/asy]

$\mathrm{(A)\ } \text{first} \qquad \mathrm{(B) \ }\text{second} \qquad \mathrm{(C) \  } \text{third} \qquad \mathrm{(D) \  } \text{fourth} \qquad \mathrm{(E) \  }\text{fifth}$

Solution

Problem 10

An arbitrary circle can intersect the graph of $y=\sin x$ in

$\mathrm{(A)\  } \text{at most }2\text{ points} \qquad \mathrm{(B)\  }\text{at most }4\text{ points} \qquad \mathrm{(C) \  } \text{at most }6\text{ points} \qquad \mathrm{(D) \ } \text{at most }8\text{ points}\qquad \mathrm{(E) \  }\text{more than }16\text{ points}$

Solution

Problem 11

How many distinguishable rearrangements of the letters in CONTEST have both the vowels first? (For instance, OETCNST is one such arrangement but OTETSNC is not.)

$\mathrm{(A)\ } 60 \qquad \mathrm{(B) \ }120 \qquad \mathrm{(C) \  } 240 \qquad \mathrm{(D) \  } 720 \qquad \mathrm{(E) \  }2520$

Solution

Problem 12

Let's write $p, q,$ and $r$ as three distinct prime numbers, where $1$ is not a prime. Which of the following is the smallest positive perfect cube having $n=pq^2r^4$ as a divisor?

$\mathrm{(A)\ } p^8q^8r^8 \qquad \mathrm{(B) \ }(pq^2r^2)^3 \qquad \mathrm{(C) \  } (p^2q^2r^2)^3 \qquad \mathrm{(D) \  } (pqr^2)^3 \qquad \mathrm{(E) \  }4p^3q^3r^3$

Solution

Problem 13

Pegs are put in a board $1$ unit apart both horizontally and vertically. A rubber band is stretched over $4$ pegs as shown in the figure, forming a quadrilateral. Its area in square units is

[asy] int i,j; for(i=0; i<5; i=i+1) { for(j=0; j<4; j=j+1) { dot((i,j)); }} draw((0,1)--(1,3)--(4,1)--(3,0)--cycle, linewidth(0.7));[/asy]

$\mathrm{(A)\ } 4 \qquad \mathrm{(B) \ }4.5 \qquad \mathrm{(C) \  } 5 \qquad \mathrm{(D) \  } 5.5 \qquad \mathrm{(E) \  }6$

Solution

Problem 14

Exactly three of the interior angles of a convex polygon are obtuse. What is the maximum number of sides of such a polygon?

$\mathrm{(A)\ } 4 \qquad \mathrm{(B) \ }5 \qquad \mathrm{(C) \  } 6 \qquad \mathrm{(D) \  } 7 \qquad \mathrm{(E) \  }8$

Solution

Problem 15

If $a$ and $b$ are positive numbers such that $a^b=b^a$ and $b=9a$, then the value of $a$ is:

$\mathrm{(A)\ } 9 \qquad \mathrm{(B) \ }\frac{1}{9} \qquad \mathrm{(C) \  } \sqrt[9]{9} \qquad \mathrm{(D) \  } \sqrt[3]{9} \qquad \mathrm{(E) \  }\sqrt[4]{3}$

Solution

Problem 16

If $A=20^\circ$ and $B=25^\circ$, then the value of $(1+\tan A)(1+\tan B)$ is

$\mathrm{(A)\ } \sqrt{3} \qquad \mathrm{(B) \ }2 \qquad \mathrm{(C) \  } 1+\sqrt{2} \qquad \mathrm{(D) \  } 2(\tan A+\tan B) \qquad \mathrm{(E) \  }\text{none of these}$

Solution

Problem 17

Diagonal $DB$ of rectangle $ABCD$ is divided into $3$ segments of length $1$ by parallel lines $L$ and $L'$ that pass through $A$ and $C$ and are perpendicular to $DB$. The area of $ABCD$, rounded to the nearest tenth, is

[asy] defaultpen(linewidth(0.7)+fontsize(10)); real x=sqrt(6), y=sqrt(3), a=0.4; pair D=origin, A=(0,y), B=(x,y), C=(x,0), E=foot(C,B,D), F=foot(A,B,D); real r=degrees(B); pair M1=F+3*dir(r)*dir(90), M2=F+3*dir(r)*dir(-90), N1=E+3*dir(r)*dir(90), N2=E+3*dir(r)*dir(-90); markscalefactor=0.02; draw(B--C--D--A--B--D^^M1--M2^^N1--N2^^rightanglemark(A,F,B)^^rightanglemark(N1,E,B)); pair W=A+a*dir(135), X=B+a*dir(45), Y=C+a*dir(-45), Z=D+a*dir(-135); label("A", A, NE); label("B", B, NE); label("C", C, dir(0)); label("D", D, dir(180)); label("$L$", (x/2,0), SW); label("$L^\prime$", C, SW); label("1", D--F, NW); label("1", F--E, SE); label("1", E--B, SE); clip(W--X--Y--Z--cycle);[/asy]

$\mathrm{(A)\ } 4.1 \qquad \mathrm{(B) \ }4.2 \qquad \mathrm{(C) \  } 4.3 \qquad \mathrm{(D) \  } 4.4 \qquad \mathrm{(E) \  }4.5$

Solution

Problem 18

Six bags of marbles contain $18, 19, 21, 23, 25,$ and $34$ marbles, respectively. One bag contains chipped marbles only. The other $5$ bags contain no chipped marbles. Jane takes three of the bags and George takes two of the others. Only the bag of chipped marbles remains. If Jane gets twice as many marbles as George, how many chipped marbles are there?

$\mathrm{(A)\ } 18 \qquad \mathrm{(B) \ }19 \qquad \mathrm{(C) \  } 21 \qquad \mathrm{(D) \  } 23 \qquad \mathrm{(E) \  }25$

Solution

Problem 19

Consider the graphs $y=Ax^2$ and $y^2+3=x^2+4y$, where $A$ is a positive constant and $x$ and $y$ are real variables. In how many points do the two graphs intersect?

$\mathrm{(A) \ }\text{exactly }4 \qquad \mathrm{(B) \ }\text{exactly }2 \qquad$

$\mathrm{(C) \  }\text{at least }1,\text{ but the number varies for different positive values of }A \qquad$

$\mathrm{(D) \  }0\text{ for at least one positive value of }A \qquad \mathrm{(E) \ }\text{none of these}$

Solution

Problem 20

A wooden cube with edge length $n$ units (where $n$ is an integer $>2$) is painted black all over. By slices parallel to its faces, the cube is cut into $n^3$ smaller cubes each of unit length. If the number of smaller cubes with just one face painted black is equal to the number of smaller cubes completely free of paint, what is $n$?

$\mathrm{(A)\ } 5 \qquad \mathrm{(B) \ }6 \qquad \mathrm{(C) \  } 7 \qquad \mathrm{(D) \  } 8 \qquad \mathrm{(E) \  }\text{none of these}$

Solution

Problem 21

How many integers $x$ satisfy the equation $(x^2-x-1)^{x+2}=1$

$\mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }3 \qquad \mathrm{(C) \  } 4 \qquad \mathrm{(D) \  } 5 \qquad \mathrm{(E) \  }\text{none of these}$

Solution

Problem 22

In a circle with center $O$, $AD$ is a diameter, $ABC$ is a chord, $BO=5$, and $\angle ABO=\stackrel{\frown}{CD}=60^\circ$. Then the length of $BC$ is:

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair O=origin, A=dir(35), C=dir(155), D=dir(215), B=intersectionpoint(dir(125)--O, A--C); draw(C--A--D^^B--O^^Circle(O,1)); pair point=O; label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(point--D)); label("$O$", O, dir(305)); label("$5$", B--O, dir(O--B)*dir(90)); label("$60^\circ$", dir(185), dir(185)); label("$60^\circ$", B+0.05*dir(-25), dir(-25));[/asy]

$\mathrm{(A)\ } 3 \qquad \mathrm{(B) \ }3+\sqrt{3} \qquad \mathrm{(C) \  } 5-\frac{\sqrt{3}}{2} \qquad \mathrm{(D) \  } 5 \qquad \mathrm{(E) \  }\text{none of the above}$

Solution

Problem 23

If $x=\frac{-1+i\sqrt{3}}{2}$ and $y=\frac{-1-i\sqrt{3}}{2}$, where $i^2=-1$, then which of the following is not correct?

$\mathrm{(A)\ } x^5+y^5=-1 \qquad \mathrm{(B) \ }x^7+y^7=-1 \qquad \mathrm{(C) \  } x^9+y^9=-1 \qquad$

$\mathrm{(D) \  } x^{11}+y^{11}=-1 \qquad \mathrm{(E) \  }x^{13}+y^{13}=-1$

Solution

Problem 24

A non-zero digit is chosen in such a way that the probability of choosing digit $d$ is $\log_{10}{(d+1)}-\log_{10}{d}$. The probability that the digit $2$ is chosen is exactly $\frac{1}{2}$ the probability that the digit is chosen in the set

$\mathrm{(A)\ } \{2, 3\} \qquad \mathrm{(B) \ }\{3, 4\} \qquad \mathrm{(C) \  } \{4, 5, 6, 7, 8\} \qquad \mathrm{(D) \  } \{5, 6, 7, 8, 9\} \qquad \mathrm{(E) \  }\{4, 5, 6, 7, 8, 9\}$

Solution

Problem 25

The volume of a certain rectangular solid is $8 \text{cm}^3$, its total surface area is $32 \text{cm}^2$, and its three dimensions are in geometric progression. The sums of the lengths in cm of all the edges of this solid is

$\mathrm{(A)\ } 28 \qquad \mathrm{(B) \ }32 \qquad \mathrm{(C) \  } 36 \qquad \mathrm{(D) \  } 40 \qquad \mathrm{(E) \  }44$

Solution

Problem 26

Find the least positive integer $n$ for which $\frac{n-13}{5n+6}$ is a non-zero reducible fraction.

$\mathrm{(A)\ } 45 \qquad \mathrm{(B) \ }68 \qquad \mathrm{(C) \  } 155 \qquad \mathrm{(D) \  } 226 \qquad \mathrm{(E) \  }\text{none of these}$

Solution

Problem 27

Consider a sequence $x_1, x_2, x_3, \cdots$ defined by

$x_1=\sqrt[3]{3}$

$x_2=\sqrt[3]{3}^{\sqrt[3]{3}}$

and in general

$x_n=(x_{n-1})^{\sqrt[3]{3}}$ for $n>1$.

What is the smallest value of $n$ for which $x_n$ is an integer?

$\mathrm{(A)\ } 2 \qquad \mathrm{(B) \ }3 \qquad \mathrm{(C) \  } 4 \qquad \mathrm{(D) \  } 9 \qquad \mathrm{(E) \  }27$

Solution

Problem 28

In $\triangle ABC$, we have $\angle C=3\angle A, a=27,$ and $c=48$. What is $b$?

[asy] defaultpen(linewidth(0.7)+fontsize(10)); pair A=origin, B=(14,0), C=(10,6); draw(A--B--C--cycle); label("$A$", A, SW); label("$B$", B, SE); label("$C$", C, N); label("$a$", B--C, dir(B--C)*dir(-90)); label("$b$", A--C, dir(C--A)*dir(-90)); label("$c$", A--B, dir(A--B)*dir(-90));[/asy]

$\mathrm{(A)\ } 33 \qquad \mathrm{(B) \ }35 \qquad \mathrm{(C) \  } 37 \qquad \mathrm{(D) \  } 39 \qquad \mathrm{(E) \  }\text{not uniquely determined}$

Solution

Problem 29

In their base $10$ representation, the integer $a$ consists of a sequence of $1985$ eights and the integer $b$ consists of a sequence of $1985$ fives. What is the sum of the digits of the base $10$ representation of $9ab$?

$\mathrm{(A)\ } 15880 \qquad \mathrm{(B) \ }17856 \qquad \mathrm{(C) \  } 17865 \qquad \mathrm{(D) \  } 17874 \qquad \mathrm{(E) \  }19851$

Solution

Problem 30

Let $\lfloor x \rfloor$ be the greatest integer less than or equal to $x$. Then the number of real solutions to $4x^2-40\lfloor x \rfloor +51=0$ is

$\mathrm{(A)\ } 0 \qquad \mathrm{(B) \ }1 \qquad \mathrm{(C) \  } 2 \qquad \mathrm{(D) \  } 3 \qquad \mathrm{(E) \  }4$

Solution

See also

1986 AHSME (ProblemsAnswer KeyResources)
Preceded by
1984 AHSME
Followed by
1986 AHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png