# Difference between revisions of "1994 AHSME Problems/Problem 20"

## Problem

Suppose $x,y,z$ is a geometric sequence with common ratio $r$ and $x \neq y$. If $x, 2y, 3z$ is an arithmetic sequence, then $r$ is

$\textbf{(A)}\ \frac{1}{4} \qquad\textbf{(B)}\ \frac{1}{3} \qquad\textbf{(C)}\ \frac{1}{2} \qquad\textbf{(D)}\ 2 \qquad\textbf{(E)}\ 4$

## Solution

Let $y=xr, z=xr^2$. Since $x, 2y, 3z$ are an arithmetic sequence, there is a common difference and we have $2xr-x=3xr^2-2xr$. Dividing through by $x$, we get $2r-1=3r^2-2r$ or, rearranging, $(r-1)(3r-1)=0$. Since we are given $x\neq y\implies r\neq 1$, the answer is $\boxed{\textbf{(B)}\ \frac{1}{3}}$

## See Also

 1994 AHSME (Problems • Answer Key • Resources) Preceded byProblem 19 Followed byProblem 21 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.

Invalid username
Login to AoPS